

Oct 2022

T1.2 Report on educators' profiling

Revision: Final

Dissemination Level: Public

Co-funded by the Erasmus+ Programme of the European Union

The European Commission's support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission or the Hellenic National Agency cannot be held responsible for any use which may be made of the information contained therein.

DOCUMENT INFORMATION

	Project Information											
Project name	Artful Educational Robotics to promote Co	omputational Thinking in a										
	Blended Learning context											
Project acronym	FERTILE											
Project number	2021-1-EL01-KA220-HED-000023361											
Project web site	www.fertile-project.eu											
	Document Identification											
Document title	T2.1 Report on educators' profiling											
Document type Report												
Filename FERTILE_R1_EDUCATORS_PROFILING_REPORT_V1.0_2022-10-31.docx												
Current status	Final											
Current version	V1											
Project Coordinator	Cleo Sgouropoulou (UniWA)											
Dissemination level	Public											
	Version history											
Version	Contributor(s)	Contribution										
0.0	UniWA: Kyparissia Papanikolaou, Maria Tzelepi, Nafsika Pappa, Eleni Zalavra URJC: David Roldán, Lía García, José María CUB: Zuzana Kubincová, Karolína Miková CUP: Petra Vaňová, Tomáš Jeřábek	Synthesise the first document's version.										
0.1	UVa : Yannis Dimitriadis CUB : Tomáš Jeřábek	Internal review										
0.2	UniWA: Kyparissia Papanikolaou, Maria Tzelepi, Nafsika Pappa, Eleni Zalavra	Address the internal review comments.										
1.0	UniWA: Eleni Zalavra, Kyparisia Papanikolaou, URJC : José María Cañas,	Proofread, final Formatting, and Publication										

CONTENTS

Document Information1
Contents2
Executive Summary
1. Introduction4
2. Design and Procedure
2.1 Phase 1: Clearly define objectives and Identify target audiences
2.1.1 Greece
2.1.2 Spain
2.1.3 The Czech Republic
2.1.4 Slovakia
2.2 Phase 2: Data collection based on Focus Groups/Interviews
2.3 Phase 3: Data analysis and results10
2.3.1 Data Analysis
2.3.2 Results and Interpretation14
Issue 1. What experience do educators have in designing interdisciplinary activities of ER and Art?
Issue 2 What experience do educators have with ER simulators and ICT for blended learning?
Issue 3. What experience do educators have with ER and Computational Thinking? 45
Issue 4. What experience do educators have with ER technologies?
3. Conclusions
REFERENCES
APPENDIX

EXECUTIVE SUMMARY

The FERTILE consortium conducted educators' profiling to lay the groundwork for a design methodology for Artful ER projects that cultivate computational thinking in a blended learning context. The scope of this profiling was to explore the experiences of educators originating from the four countries participating in the FERTILE Project.

Since the FERTILE methodology aims to be usable and to embrace the educational needs of educators, we considered it necessary to collect and analyse educators' perspectives on the challenges they have faced, the benefits they see, their needs and suggestions. To this end, the consortium has produced this report, which contains the process and results of the educators profiling study in the four countries participating in the FERTILE Project, Greece, Spain, Checz Republic and Slovakia. We focused on collecting experiences from educators who have already implemented educational robotics activities, focusing on interdisciplinarity, computational thinking, or blended learning.

The research design focused on the question, "How to support educators in designing interdisciplinary activities of ER and Art that promote CT in a blended learning context?". The consortium organised the research in three phases. The 1st phase included identifying the research objectives and the target audience. We opted to adopt purposive sampling; therefore, the 1st phase involved a preliminary survey questionnaire for each country's participants, which allowed us to select the educators that subsequently participated in the educators' profiling study. After that, the 2nd phase included conducting focus groups and interviews to collect data through a fine-grained script based on an anticipatory coding scheme. Lastly, the 3rd phase included the data analysis process and presenting the profiling study's results.

This document concludes by addressing the main research question and reflecting on how the profiling results may inform the development of the FERTILE design methodology.

1. INTRODUCTION

This report constitutes the second milestone (M1.2) set for implementing the first project result: "The FERTILE design Methodology".

The educators' profiling aimed to collect as much information as possible from educators who teach Educational Robotics (ER) or Arts to build a comprehensive understanding of the issues they face and what type of support they need to evolve their teaching practice. In our case, "needs assessment" refers to the difference between educators' current and intended practices according to the FERTILE methodology. The intended practices involve applying contemporary pedagogies when embracing cross-disciplinary learning through integrating ER with Arts in artful ER projects cultivating Computational Thinking (CT) in a blended learning context.

This needs assessment aims to serve as a tool for decision-making in the upcoming project tasks and mainly in the design of the FERTILE methodology (Result 1, Task 3).

As planned in the FERTILE application, four partners (one from each country participating in the FERTILE Project) contributed to this report and its associated research among the five FERTILE consortium partners. These partners were UniWa from Greece, CUP from the Czech Republic, CUB from Slovakia, and URJC from Spain. It is worth mentioning that the research team of UVa, although not initially planned in the FERTILE application, has contributed to the methodological aspects of the field research and acted as an internal evaluator of this report. After the project initiation, the consortium decided to enrich our quality plan by incorporating internal quality control in all the tasks actualised within the FERTILE Project's work. To this end, one member of the UVa research team and one member of the Czech research team acted as internal evaluators. They provided valuable comments and suggestions for improving this report.

In what follows, in the 2nd section, we elaborate on the three phases we have followed in the research design and procedure. We introduce the main research question that has driven our research, define our objectives, and how we identified target audiences. Then we describe how we collected data based on Focus Groups/Interviews. Afterwards, we describe the data analysis we have followed and how the FERTILE coding scheme was shaped. Subsequently, we present the results and their interpretation. In the 3rd section, we draw conclusions from the educators' profiling. The conclusions are twofold. Firstly we address the main research question by elaborating on the results around the issues investigated, and secondly, we reflect on how results may inform the FERTILE design methodology.

2. DESIGN AND PROCEDURE

In this section, we elaborate on the three phases we have followed in the design and procedure of the educators' profiling research. We introduce the main research question that has driven the research, define objectives, and how we identified target audiences. We also describe how we collected data based on Focus Groups/Interviews. Afterwards, we present the data analysis we have followed and how the FERTILE coding scheme was shaped. Subsequently, we present the results and their interpretation.

Conducting an educators' needs assessment is integral to the programmatic planning efforts of the FERTILE Project. As seen in Figure 1, the procedure followed involved three phases.

Fig 1.: The procedure for conducting educator profiling

Phase 1: Clearly define objectives and identify target audiences.

Initially, the research design was synthesised by project partners from four countries (UJRC, UNIWA, CU, UB) with the support of Yannis Dimitriadis from UVa. Then we reached educators from various educational levels and disciplines through a preliminary survey. The aim was to explore their teaching experience to form our profiling sample and subsequently organise focus groups and interviews to gain insights into their profile.

Phase 2: Data collection based on the focus groups/interviews.

Then, through focus groups and interviews, we recorded the educators' (a) current ER practice, interdisciplinary design experience, blended learning application, and CT cultivation, (b) reflections on their practice focusing on compelling perspectives and challenges they have faced, as well as (c) readiness related to undertaking the aims of the FERTILE Project.

Phase 3: Data analysis and results.

After collecting, cleaning, and analysing qualitative data, the four partners synthesised and interpreted the findings.

Subsequently, we drew conclusions and produced a comprehensive report. This report will be utilised in the FERTILE Project's next steps concerning the FERTILE design methodology (T1.3).

Below we present in detail the three phases.

2.1 Phase 1: Clearly define objectives and Identify target audiences

Since the FERTILE initiative aims at supporting educators in designing artful ER projects for cultivating CT in a blended learning context, we have set the main **research question**: "How to support educators in designing interdisciplinary activities of ER and Art that promote CT in a blended learning context?". To address such a broad research question through educators' profiling, we collaboratively defined the following main **issues** to drive our research:

- understanding how educators design and implement interdisciplinary projects of ER and Art,
- understanding educators' approaches in designing and implementing blended learning while teaching ER using simulators or Art,
- understanding educators' knowledge and skills in defining and cultivating CT skills.

Moreover, for each issue, we have set the following needs assessment **objectives**:

- to record educators' current state, i.e., knowledge and experience;
- to record the difficulties/challenges that educators face in their educational contexts;
- to record the advantages that educators acknowledge; and
- to record the support that educators need.

Aiming to address these objectives, we opted to form a **purposive sample** (Miles et al., 2014) of educators from all educational levels to synthesise our profiling sample. To this end, we performed a preliminary step that allowed us to determine the participants of this purposive sample. We reached several educators working with ER in their everyday practice in schools (primary and secondary education) or teaching relevant courses in universities and asked them to participate in a preliminary survey. This **survey** (see APPENDIX A) included questions about the context in which they have integrated ER. It investigated the technology they have used (physical robots and simulators), whether they have implemented interdisciplinary projects with ER and arts, and whether they have implemented ER in blended learning contexts.

The **data analysis** of this preliminary survey allowed us to select representative educators for profiling from the three educational levels, primary, secondary and higher education.

In what follows, we present the approach followed by each partner for collecting the data from these preliminary surveys. Also, we elaborate on the rationale of selecting participants for our profiling sample and organising **online focus groups and interviews** to collect insights into the objectives set.

2.1.1 Greece

The UniWA research team collected 45 survey questionnaires from primary, secondary, and higher education educators.

- 90% had more than 13 years of teaching experience.
- 69% had Master's degrees, and 18% held a PhD.
- 74% were ICT educators in primary or secondary education.
- 35% had not attended ER training courses, 13% were certified ER trainers, and the rest attended online seminars for a specific ER technology.
- 45% used a project-based frame to integrate ER.
- 47% taught ER during the COVID-19 pandemic and 60% of those had used ER simulators.

- 33% applied interdisciplinary projects combining ER with Arts and Crafts, 33% with Video Editing, 29% with Music, and 15% with Dancing (15%).
- The most used ER technology was Arduino (51%), Lego EV3 (38%), Lego WeDo (33%), Beebot (28%), Lego Spike (17%) Raspberry Pi (13%).

Based on the Greek educators' answers to the preliminary survey questionnaire, 14 educators were selected to participate in the online focus groups or the interviews. The Greek team chose those who positively responded to participate and met at least one of the following criteria: i) teaching experience with ER or ER simulators and ii) teaching experience in designing and applying interdisciplinary activities with robotics and Art. Three Art educators with interdisciplinary teaching experience with ICT were also selected to complement the sample.

Finally, the UniWA research team conducted the following online focus groups and interviews :

- Two focus groups with 5 educators of primary education
- Two focus groups with 7 ICT educators of Secondary education
- One focus group with three Art educators from primary/secondary education
- Two interviews with educators of higher education from departments of preschool education.

2.1.2 Spain

The URJC research team collected 25 survey questionnaires from kindergarten, primary, secondary, higher and non-formal educators. One educator specialising in students with visual disabilities has also answered the questionnaire.

- 84% had more than 13 years of teaching experience.
- 16% held a PhD, and 12% had a Master's degree.
- 48% were ICT or Technology teachers in secondary schools
- 12% had not attended ER courses
- 68% used Project based methodology to introduce ER
- 20% never had blended Arts with ER
- 56% did not teach ER during the COVID-19 pandemic, and only 20% had used simulators.

The most used ER technologies were: Arduino (64%), MicroBit (60%), BeeBot (52%), Mbot (44%), OzoBot (36%), Lego WeDo (36%), Lego EV2 (32%), Edison (32%), Lego Spike (24%), RaspBerry Pi (24%). Other technologies used by some teachers were: Makey-Makey, Escornabot, Goma Brain, Beduino, and Matatalab.

Based on the survey questionnaires, 13 educators were selected to participate in 3 focus groups. The focus groups were organised as follows:

- Focus group 1 (face-to-face): Participants were one Arts educator, one primary educator, and one ICT secondary educator specialising in teaching visually impaired students.
- Focus group 2 (online): Participants were one university professor (preservice primary teachers educator), one kindergarten and primary teacher, one primary teacher, and one technology teacher in secondary education.

• Focus group 3 (online): Participants were two school counsellors, one primary teacher (specialising in teaching students with visual disabilities), one university professor (preservice primary and kindergarten teachers educator), and two technology teachers in secondary education.

2.1.3 The Czech Republic

The CUP research team collected 35 preliminary survey questionnaires (32 valid) from primary, secondary and higher education educators. Those educators mostly had more than five years of experience. There were just three educators with less than three years of experience and two educators in the first year of their practice. 88% of them had Masters degrees. The vast majority (31/32) had teaching experience in secondary education. Some had teaching experience in primary and lower-secondary education.

Half of the Czech educators stated having participated in workshops and webinars organised by the National Institute of Pedagogy (NPI). Such involvement was attributed to the recent curriculum changes in the primary and lower-secondary Czech education system. The educators mostly used robotics education in Computer science (Informatika). Furthermore, in primary and secondary education, they could apply robotics in the context of Maths or Physics subjects. Eight respondents also used educational robotics in some informal courses at their schools.

Most Czech educators declared being acquainted with educational robotics or programmable toys. Popular technologies mentioned were Beebot, Mechatronic Education, FoXee Lab, Arduino, iRobot, Wunderkind, VEX 123, Robotika LEGO® Education SPIKE[™] Essential a Prime, Stavebnice VEX 1-2-3, GO, Micro:Bit. There were just two educators who claimed not knowing anything about robotics. It is worth mentioning that one of the Czech educators who participated in the preliminary survey was a certified ER trainer. Also, educators claimed having used other types of technologies with their students, like Mechatronic Education, FoXee Lab, Dobot Magician, Photon, CodeyRocky, Sphero Edu, Matatalab, Fable, and Sam Labs.

Eleven respondents had some experience with simulators during the Covid-19 pandemic, and educators mentioned especially using three types of simulators: Vex code, Geogebra, MakeCode, but individually mentioned Scratch or Ozoblockly. Only nine respondents had made, prepared or moderated activities, including ER and Arts.

The focus groups were organised as follows:

- Two Focus groups with eight educators originating from primary, lower and upper secondary education. It is worth mentioning that among them were two Art teachers (music education, arts education).
- Two interviews with university professors. One taught Computer science in postgraduate courses, and the other taught Computer science in primary teacher education.

2.1.4 Slovakia

The CUB research team collected 29 preliminary survey questionnaires from primary, secondary and higher education educators. The largest group of respondents consisted of educators aged 25 to 40 years old. Also, slightly more than a quarter were 41 to 55 years old. Their teaching

experience was balanced. They were mainly either novice educators with teaching experience of up to 5 years or more experienced educators with experience of 13 to 20 years. Most respondents taught at a primary or lower secondary school (62%). The fewest respondents were from higher education (10%). More than half of the respondents had completed a second university degree (Master, Engineering). Moreover, almost 25% had a third degree, i.e., a PhD. More than half of all respondents had a degree in Computer Science, and slightly less than half had a degree in Mathematics.

Based on the data collected from the questionnaires and personal acquaintances in the community dedicated to educational robotics in Slovakia (which is not particularly large), the CUB research team selected and approached 16 educators with whom they conducted online interviews. The educators approached were those who had many years of experience with robotics. Usually, one or at most two respondents were interviewed at a time.

The Slovak team conducted in total:

- Four individual interviews of university professors, each of whom also taught at one or more primary or secondary schools.
- Two individual interviews of two Informatics teachers at high schools.
- One individual interview of an Informatics teacher at a lower secondary school.
- One interview of two Informatics teachers at high schools.
- Three interviews, each of two educators, both of whom taught at a lower secondary and a high school.
- One individual interview of a music educator.

2.2 Phase 2: Data collection based on Focus Groups/Interviews

Considering that qualitative research sampling tends to be more strategic and purposive because it focuses on a case's unique contexts (Miles et al., 2014), the FERTILE consortium asserts that the purposive sampling adopted in our research ensured that our profiling sample included representative educators' profiles. Our sample represents educators' profiles from 4 European countries and all education levels whose practice involves ER or Art.

We planned that the online focus groups and interviews follow a structured script based on the objectives set for our research. To this end, we designed our research following an anticipatory data condensation strategy (Jorrín-Abellán et al., 2021; Stake, 2010; Miles et al., 2014). We defined three *issues* that we wanted to explore:

- Teaching experience in interdisciplinary activities with ER and Art,
- Teaching experience with ER simulators, communication technologies & blended learning,
- Teaching experience with ER and Computational Thinking.

For each issue, we triggered educators' feedback on four *topics* or areas of interest in which the issue's complexity was reduced:

- their relevant experience,
- the difficulties/challenges they encountered,

- the advantages they perceived,
- the support they required.

In addition, we asked the educators to propose relevant ideas for educational practice for the 2^{nd} and the 3^{rd} issue.

The questions posed at the online focus groups/interviews are provided in APPENDIX B in two versions, those addressed to groups of educators other than Art (Version 1) and those provided to art educators (Version 2).

Each online focus group was facilitated by one or two researchers who introduced the session, asked questions, and encouraged participation by all group members. The discussions were video-recorded for subsequent word-to-word transcription.

2.3 Phase 3: Data analysis and results

2.3.1 Data Analysis

We followed a deductive coding scheme to address the main research question, "How to support educators in designing interdisciplinary activities of ER and Art that promote CT in a blended learning context?" (Willing, 2013). This scheme followed an analysis framework that evolved around the issues identified in the anticipatory data condensation process set during our research design (see section 2.2). We organised the coding process into four phases.

In the first phase, the Greek researchers performed a preliminary content analysis and generated an initial coding scheme to organise the data analysis process among partners. This coding scheme classified educators' feedback into preliminary categories.

Subsequently, in the second phase, the rest of the partners considered this scheme for their datasets. They proposed extra categories or modifications to existing ones to synthesise the main FERTILE categories. It is worth mentioning that each partner used two researchers to negotiate the content analysis of their country's dataset and inter-partner negotiation occurred systematically to achieve the consortium consensus. Also, several online meetings took place during July and August of 2022 among the partners to develop a shared understanding of the process.

The Greek researchers considered the categories identified in the second phase towards a refined coding scheme in the third phase. This coding scheme adopted the shared categories identified in the second phase as Codes II. These Codes II were further classified in overarching Codes I. Finally, the Codes I that shared similar characteristics formed Themes. An example of the interrelation between educators' responses with categories/Codes II, Codes I, and Themes is illustrated in Figure 2.

Fig. 2: An example of the FERTILE coding scheme

In the fourth phase, the rest of the partners considered the refined coding scheme, and interpartner negotiation resulted in the final coding scheme. Afterwards, all partners applied the final coding scheme to their datasets and performed a frequency analysis of the content analysis results (Neuendorf, 2019).

An overarching issue emerged during the coding scheme's refinement. We considered it useful for the FERTILE Project's continuation to present distinctively this issue involving ER technologies that educators utilise in their practice. Thus, a fourth issue was added to the three issues initially set (see Section 2.2). Consequently, we adopted an anticipatory data condensation strategy for the data analysis of our datasets that was organised into three levels. The first level included four issues which in the second level were further analysed in specific topics (T). These topics in the third level were addressed by informative questions (IQ) that subtly defined the line to follow to establish conclusions around the issues. Figure 3 illustrates the final analysis framework for the educators' profiling.

RQ: How to support teachers design interdisciplinary activities of ER and Art that promote computational thinking in a blended learning context?

Fig. 3. Visual representation of the anticipated data condensation strategy for educators profiling.

Issue 1. What experience do educators have in designing interdisciplinary activities of ER and Art?

- T1.1 The Design Ideas
- IQ1.1 How have educators designed interdisciplinary activities combining ER with Arts?
- T1.2 The Difficulties/Challenges
- IQ1.2 What challenges do educators face when designing interdisciplinary activities combining ER with Art?
- T1.3 The Benefits/Implications
- IQ1.3 What are the implications of organising interdisciplinary activities combining ER with Art?
- T1.4 The support required
- IQ1.4 What type of support do educators require to design interdisciplinary activities combining ER with Art?

Issue 2. What experience do educators have with ER simulators and ICT for blended learning?

- T2.1 The Design Ideas
- IQ2.1 How have educators designed ER activities utilising ER simulators and ICT for blended learning?

- T2.2 The Challenges
- IQ2.2 What challenges do educators face when utilising ER simulators and ICT for blended learning?
- T2.3 The implications
- IQ2.3 What are the implications of utilising ER simulators and ICT for blended learning?
- T2.4 The mindset
- IQ2.4 How can educators' mindset shift towards integrating ER simulators and ICT for blended learning?
- T2.5 The support required
- IQ2.5 What type of support do educators require to utilise ER simulators and ICT for blended learning?

Issue 3. What experience do educators have with ER and Computational Thinking?

- T3.1 The Design Ideas
- IQ3.1 How have educators designed ER activities to promote students' Computational Thinking?
- T3.2 The Challenges
- IQ3.2 What challenges do educators face when designing ER activities to promote students' Computational Thinking?
- T3.3 The implications
- IQ3.3 What are the implications of utilising ER to promote students' Computational Thinking?
- T3.4 The support required
- IQ3.4 What type of support do educators require to utilise ER to promote students' Computational Thinking?

Issue 4. What experience do educators have with ER technologies?

- T4.1 The Technologies
- IQ4.1 What ER technologies do educators utilise in their practice?

2.3.2 Results and Interpretation

Results are presented in Tables x.A and Tables x.B, where x=1-14.

Specifically, **Tables x.A**, i.e., Table 1.A up to Table 14.A provide the educators' responses per country and educational level, focusing on Themes (column 'Theme') and Codes I (column 'Code I'). Moreover, **Tables x.A** include the number of educators' responses per country (Greece, Slovakia, Czech Republic, and Spain) from primary education (column P), secondary education (column S), higher education (column H), and Art educators (column A).

Additionally, the column '%' presents the frequency of educators' responses **per country** as follows:

- for Table x.A, frequency (%)=sum of responses classified as Code I/N* 100
- for Table x.B, frequency (%)=sum of responses classified as Code II/N* 100

where N=sum of total responses of the country

When conducting the focus group discussions, each educator (participant) could have given more than one response to each question, so we decided that "N" should correspond to the number of responses rather than the number of educators (participants).

Then, focusing on the most popular Codes I per country, the **Tables x.B** present their associated Codes II and some quotes. For example, Table 1.B shows the Codes II of the codes having the highest frequency per country, as shown in Table 1.A. Finally, **Tables x.B** include indicative quotes for each value of Code II of Table x.B.

Below we present the results for each issue and its informative questions. We also interpret the results appearing in Tables x.A, and x.B following the procedure:

- Step 1: Initially, we comment on the Code(s) I of Table x.A noted as the most popular ones by meeting two criteria (the corresponding rows are marked in colour). They either had the highest frequency per country, or they had frequencies of 25% and above per country. We have chosen to note those codes achieving a quarter of responses due to the variety of responses given to each question.
- Step 2: Then, we comment on Codes II included in Table x.B, corresponding to the Codes I noted in Step 1.
- Step 3: Finally, if deemed noteworthy, we indicate the quotes included in Table x.B, corresponding to the Codes II noted in Step 2.

Issue 1. What experience do educators have in designing interdisciplinary activities of ER and Art?

T1.1 The design ideas

IQ1.1 How have educators designed interdisciplinary activities combining ER with Arts?

The analysis of the educators' responses about their experiences or ideas on interdisciplinary activities of ER and Art, identified three different themes (see Table 1.A, column 'Theme'):

• 'Arts and Crafts',

- 'Literature',
- 'Performing Arts'.

These themes were further analysed in three levels of detail reflected in Codes I and Codes II (see Table 1.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 1.B (see Table 1.B, column 'Quotes').

For example, regarding the first theme, i.e., ER with 'Arts and Crafts', the educators' responses are classified into five Codes I (see Table 1.A, column 'Code I'). These codes are: 'Program robot to perform Art', 'Program robot to create Art', 'Program robot to respond to artful triggers', 'Create Artful robots and program them for a general task', and 'Create Artful robots and program them to perform Art'. In particular, the most frequently reported are:

- "Program Robot to create Art" for activities involving programming robots to create an artefact/piece of Art. For instance, robots use a pencil or a marker to draw on paper.
- "Program Robot to perform Art" for activities involving programming robots to perform Art. For instance, robots may be the characters in a play; they may create Music or dance on specific steps.
- "Create Artful Robots" for activities involving constructing robots with artistic materials, such as painting or dressing them in costumes designed by the students.

Then, in Table 1.B, we focus on the Codes I of Table 1.A having the higher frequencies, and we present the corresponding Codes II (column 'Code II'). For example, the Code I: 'Program Robot to create Art' is further organised into two categories 'Robot having a pencil to draw' and 'Painting: Robot draws based on an Art style (e.g., Cubism, Renaissance)'. Accordingly, Table 1.B. complements Codes II results with indicative educators' quotes.

Below we present the results. The results indicate that educators' design ideas on interdisciplinary activities (GR: 28.0%, CZ: 26.7%, SP: 35.0%) mainly involved ideas on 'Arts & Crafts' (see Table 1.A, 'Theme') and especially on 'programming robots to perform art' (see Table 1.A, 'Code I'). In more detail, 'drawing and constructing playgrounds with ER on a specific role' was the dominant idea (see Table 1.B - Code I: "Program robot to perform Art").

Many Slovak educators' responses (33.3%) mentioned programming robots to create Art (see Table 1.A) and specifically to produce Music (see Table 1.B - Code II: 'Playing Music using robots'). Also, many Spanish educators' responses (25.0%) shared the same idea (see Table 1.A). Furthermore, 25% of Spanish and 20% of Czech educators suggested creating artful robots to perform Art (see Table 1.A). Namely, programming robots to dance (see Table1. B, Code II: 'Dancing robots') and for theatre (see Table 1.B, Code II: 'Theatre: Constructing and decorating robots for a play').

We note that educators designed interdisciplinary activities combining ER with Arts mainly by *programming and constructing robots to produce an artistic artefact.* For evidence, see Table 1.A, Code I: 'Program robot to perform art', and 'Create Artful robots to perform Art'. From the corresponding quotes of the Codes I as mentioned above, we deem that the stimulus for these interdisciplinary activities usually involved addressing an artistic challenge (see Table 1.B "We made a moving puppet..." (SP), and "The chicks dance" (SP).

Theme	Code I	G	iree	ece	(N=	:25)	SI	ova	ıkia	(N	=30)	Re		he (blio		ch =15)		Spa	in ([N=]	20)
		Р	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%
afts	Program robot to perform Art	2	4		1	28.0		2			6.7	1	2	1		26.7	4	1	0	2	35.0
ı Arts & Cr	Program robot to create Art	1	2	1		16.0	3	1			13.3	1	1	1		20.0					
ies of ER with	Program robot to respond to artful triggers	2		1		12.0		1			3.3										
Interdisciplinary activities of ER with Arts & Crafts	Create Artful robots and program them for a general task				1	4.0	1	3	1		16.7										
Interdisc	Create Artful robots and program them to perform Art				1	4.0	1				3.3										
Interdisciplinar y activities of ER with Literature	Create Artful robots	3		1		16.0					0.0			1		6.7	3				15.0
ary with Music, rr)	Create Artful robots to perform Art		2		1	12.0	1		1		6.7	1		2		20.0	3		2		25.0
Interdisciplinary activities of ER with Performing Arts (Music, dance, theater)	Program robot to create Art		2			8.0	4	6			33.3		1		1	13.3	4	1			25.0
Inte activ Perforn dau	Program robot to perform Art							4		1	16.7			2		13.3					

Table 1.A. Two-level coding (Themes, Code I) of educators' responses on how they designed interdisciplinary activities combining ER with Arts (IQ1.1).

(*) The highlighted rows are further analysed in Table 1.B

Report on educators' profiling FERTILE – *Public*

Theme	Code I	Code II	Gro	eec	:e (1	N=25)			oval N=3			Re		zech blic .5)				Spa [N=2		Quotes	
			Р	S I	HA	%	P	S	H A	%	P	S H	I A	9	%	Р	S	H A	%		
Interdisciplinary activities of ER with Arts & Crafts	Program robot to perform Art	Drawing and constructing a playground with ER on a specific role	2	4	1	28.0		2		6.7	1	2 1	-	26	6.7	4	1	0 2	35.0	"the students used recyclable materials to create a bench and a lake, and programmed the robot as a windmill." (GR) "they constructed a village. One of the village houses was Mondrian's, and another one was Picasso's. Then they programmed the Arduino to move" (SP)	
f ER with ance,	Create	Dancing robots		2		8.0	1		1	6.7	1	2		20	0.0	2		1	15,0	they programmed the Arduino to move" (SP) " chicks dance. They programmed 8 ozobots to do a coordinated dance. From the movement of the kide	
erdisciplinary activities of ER with Performing Arts (music, dance, theatre)	Artful robots to perform Art	Theatre: Constructing and decorating robots for a play			1	4.0				0.0						1	1		10,0	"We made a moving puppet" (SP)	
Interdisciplinary Performing Aı the	Program robot to create Art	Playing Music using robots		2		8.0	4	6		33.3		1	1.() 13	3.3	4	1		25,0	" playing music by programming Microbit" (CZ) 25,0 "a robot represented Freddie Mercury interpreting song." (SP)	

Table 1.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ1.1.

FERTILE – Public

T1.2 The Difficulties/Challenges

IQ1.2 What challenges do educators face when designing interdisciplinary activities combining ER with Art?

The analysis of the educators' responses about the challenges they faced when designing interdisciplinary activities of ER and Art, identified five different themes (see Table 2.A, column 'Theme'):

- Design Issues,
- Students Issues,
- Technical Issues,
- Curriculum Issues, and
- Educational context.

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 2.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 2.B (see Table 2.B, columns 'Code I', 'Code II', 'Quotes').

As shown in Table 2.A, educators' most prominent challenge when designing interdisciplinary activities combining ER with Art was collaborating with educators of different disciplines (GR:22.4%, SK:27.3%, SP:28.9%). In particular, educators encountered practical difficulties during their collaboration with other colleagues. These difficulties involved (i) educators not sharing common working hours with colleagues (see Table 2.B, Code II: 'Collaboration not facilitated among art educators-primary educators-ICT educators'), (ii) educators' unwillingness to collaborate (see Table 2.B, Code II: 'Lack of collaboration among educators'), and educators not sharing the same perceptions on how they should collaborate (see Table 2.B, Code II: 'Different educators' mindset towards collaboration').

We noted two difficulties encountered mainly by the Czech educators. The first one (23.1%) involved designing interdisciplinary activities that combine ICT and Arts as it was difficult for educators to understand the objective of each subject (see Table 2.B). The second one (23.1%) involved the educational context, specifically the school management (see Table 2.A). The Spanish educators also frequently reported the latter difficulty (26.3%). Specifically, the educators reported having to teach (i) in more than one school, (ii) in limited time, (iii) in many different classrooms, which often had many students, and (iv) with a limited budget for purchasing technology (see Table 2.B).

Therefore, the results indicate that the biggest challenge that the educators had to overcome was *collaborating with peers from different disciplines*. See evidence in Table 2.A, Code I: "Management of ICT and Art" and Table 2.B, Code II: "Educators need to understand the objectives of each subject". Also, see Table 2.a Code I: "Interdisciplinary Collaboration and Table 2.B Code II: Collaboration not facilitated among Art educators-primary educators-ICT educators.

Theme	Code I				ec :49				ova N=					Rej	-	zech blic .3)				aiı :38	
		Р	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%	P	S	H	A	%
S	Management of ICT and Art			3		6.1	1	1		1	4.5	2	1			23.1					
Design Issues	Management of various needs of students	1				2.0	3				4.5						1	2			7.9
esign	Choose appropriate technologies					0.0			1		1.5	1				7.7					
D	Appropriate Material		1			2.0	1	3			6.1										
s It	Focus	1		1		4.1					0.0						1				2.6
Student Issues	Students' poor ICT and Programming Skills		2			4.1	1	2	3		9.1						1	2			7.9
S –	Engagement	ĺ			3	6.1		1	1		3.0	1				7.7					
cal s	Appropriate Robotic technologies availability		1	1		4.1	1	4			7.6						1	3	1		13.2
Technical Issues	Robotic components' malfunction					0.0	1	2			4.5										
Te	ICT malfunction					0.0		1			1.5	1				7.7					
ss L CU	Time limitation	3	5	1		18.4	2	4	2		12.1						1	1			5.3
Curricu lum Issues	Lack of Interdisciplinarity		2			4.1	3	1	1		7.6										
Cu Is	School management					0.0					0.0	1				7.7					
-	School management	1	4		3	16.3	3	2		1	9.1	1	1	1		23.1	3	5	1	1	26.3
Educational context	ER and interdisciplinarity added value		3			6.1					0.0						1				2.6
Educa	Interdisciplinary collaboration	1	7	1	2	22.4	6	10	2		27.3	1				7.7		6	3	2	28.9
I	Educator training		1		1	4.1				1	1.5	2				15.4	1	1			5.3

Table 2.A. Two-level coding of educators' responses on the challenges they faced when designing interdisciplinary activities combining ER with Arts (IQ1.2)

Theme	Code I	Code II			eeo =49			Slov (N=	-	-		Re	e Czo pub V=13	lic		-	pai =3		Quotes
			P	S H	I A	%	P	S H	A	%	P :	S I	H A	%	P S	S H	I A	%	
les	t of t	Balance art and programming.		1	-	2.0			1	1.5				0.0				0.0	"Integrating informatics' concept with Artistic ones is challenging." (GR)
gn Issues	Management of ICT and Art	ICT educators do not have expertise in other subjects, e.g., music.				0.0	1			1.5				0.0				0.0	" missing a peer who is acquainted with music or art, you have limited ideas on how to integrate art" (CZ)
Design	Manag	Educators need to understand the objectives of each subject.		2	2	4.1		1		1.5	2	1		23.1				0.0	"I need colleagues' expertise on other subjects" (SK)
	School management	Oversized classes. Educator in more than one school. Educator teaching in many classes.	1	1		4.1				0.0				0.0	ź	2	1	7.9	"When my class is full with around 30 students, I cannot teach some of them Scratch" (SP)
	ol man	Actual classroom time.	1			2.0	2	1	1	6.1				0.0	2 2	2		10.5	"The teaching time is not 45 minutes. It can be 40 or 35 depending on the school schedule." (GR)
text	Schoo	Limited financial resources for technologies/materials.		3	3	12.2	1	1		3.0	1	1	1	23.1	1 1	1	L	7.9	"Robotic supplies are tricky. It is not like telling your boss, " well, buy me robots"." (SP)
Educational context	tion	Collaboration is not facilitated among art-primary-ICT educators.				0.0				0.0				0.0	Ļ	4 1	l 1	15.8	" teach in 3 or 4 schools, so I cannot contact other educators when it suits me." (GR)
ucation	Interdisciplinary collaboration	Different educators' mindsets toward collaboration.	1	1	-	4.1	1	3 1		7.6				0.0	2	2 2	2 1	13.2	" Other educators' attitude is peculiar. Usually, they do not respond to my suggestions for collaboration." (SP)
Ed	iary co	Lack of collaboration among educators	1	5		12.2	4	6 1		16.7	1			7.7				0.0	"the problem of finding a computer science educator for the first grade." (CZ)
	liscipliı	ER is focused more on competitions than interdisciplinary collaboration		2	2	8.2				0.0				0.0				0.0	" Some competitions are very demandingThey stick in following robotic competitions' prerequisites. " (GR)
	Interd	Time difficulties in collaborating with other educators.				0.0	1	1		3.0				0.0				0.0	" we are always busy at school, and it is hard to find someone willing to work with you we do not keep up Older colleagues are not up to it at all." (SK)

Table 2.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ1.2

Report on educators' profiling

FERTILE – *Public*

T1.3 The Benefits/Implications

IQ1.3 What are the implications of organising interdisciplinary activities combining AR with Art?

The analysis of the educators' responses about the implications of organising interdisciplinary activities of ER and Art, identified four different themes (see Table 3.A, column 'Theme'):

- Student Engagement,
- Student Learning,
- Student Skills, and
- Educator practice.

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 3.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 3.B (see Table 3.B, columns 'Code I', 'Code II', 'Quotes').

As seen in Table 3.A, the responses of the Slovak and Spanish educators (SL:24.6%, SP:31.0%) highlighted as most beneficial the interdisciplinarity of ER with Art regarding cognitive issues (see Table 3.A) and specifically on students' motivation and interest (see Table 3.B, Code I: 'Cognitive'). Also, the Greek and the Czech educators (GR:12.5%, CZ:11.8%) shared the same perception, although not as often (see Table 3.A Code I: 'Cognitive'). The responses of the Greek educators also highlighted the promotion of students' emotional engagement (12.5%) (see Table 3.A Code I: 'Emotional') through CT, as well as that CT engages students in authentic learning (12.5%) (see Table 3.A Code I: 'Authentic Learning').

The Czech educators' responses brought to the fore that interdisciplinarity promotes meaningful learning (23.5%) and students' effective teaching (23.5%) (see Table 3.A). Also, the Greek (9.4%), Slovak (8.8%), and Spanish (6.9%) educators' responses highlighted the benefits of effective teaching. They focused specifically on ER and Art promoting interdisciplinarity (see Table 3.B, Code II: 'ER acts as a link between many subjects', 'Art enriches any subject') and inclusion (see Table 3.B, Code II: 'helps educators to create inclusive activities').

Therefore, the main implications of organising interdisciplinary activities of educational robotics and Art were (i) *facilitating students' engagement with a cognitive objective*, (ii) *reinforcing meaningful and authentic learning*, and (iii) *promoting ER and Art as pillars of interdisciplinarity and inclusion*.

Theme	Code I			ire N=				Slo (N	ova N=					'he (Repu (N=	ıbli	С			Spa N=2)
		Р	S	H	A	%	Ρ	S	Η	A	%	Ρ	S	H	Α	%	Р	S	H	A	%
nt nent	Cognitive	2	2			12.5	3	10		1	24.6			2		11.8	3	5		1	31.0
Student engagement	Behavioural	1		1		6.3	1	2			5.3						1	1			6,9
eng	Emotional		4			12.5					0.0										0,0
	Meaningful learning	1				3.1	1	3	1		8.8	1	1	2		23.5	1	1		1	10.3
<u>م</u> ب	Experiential learning	1		1		6.3	1	1	1		5.3						1	1			6.9
nin	Authentic learning	1	3			12.5	4	4	1	2	19.3		2			11.8					0.0
Student Learning	Collaborative learning		3			9.4	2	2	1		8.8		1			5.9	3	1			13.8
S J	Inquiry-based learning			1		3.1			1		1.8										0.0
	Feedback provision					0.0		1			1.8										0.0
t	Problem-solving				1	3.1	2				3.5		1			5.9					0.0
Student Skills	Creative thinking		1		1	6.3	2	2			7.0			2	1	17.6					0.0
Sk Sk	Collaboration		3			9.4					0.0						3	1			13.8
•	Sensory					0.0		1		1	3.5		4								0.0
	Assessment		2			6.3					0.0					0.0					0.0
tor ce	Collaboration					0.0	1				1.8					0.0	1	2			10.3
Educator practice	Effective teaching (educator knowledge strategies and conduct)		1		2	9.4	2	1	2		8.8	1	2	1		23.5		2			6.9

Table 3.A. Two-level coding of educators' responses on the benefits of organising interdisciplinary activities combining ER with Arts (IQ1.3).

Theme	Code I	Code II		Gre (N=		-			ova N=5	kia 7)		F	Rep	Czo oub =17				Spa N=2		Quotes
			Р	S H	A	%	Р	S	H A	\ %) I	P S	H	A	%	Р	S	H A	%	
it ent		Increases student motivation				0.0	1	6		12.	.3				0.0				0.0	" to motivate students' interest" (GR)
Student engagement	Cognitive	Increases students' interest	2	2		12.5	1	3	1	8.8	3		2		11.8	2	2	1	17.2	" they were interested in relating the program to the Microbit and then observed how this affects the control light" (SK)
Ű		Increases girls' interest				0.0	1	1		3.5	5				0.0	1	3		13.8	" girls were more interested than boys." (SP)
	Meaningful learning	Constructing and programming for a meaningful purpose	1			3.1	1	3	1	8.8	3	1	2		23.5	1	1	1	10.3	"I consider advantageous the fact that we are not just coding without any particular meaning." (GR)
ğ		Connecting digital and real worlds				0.0	1	2		5.3	3				0.0				0.0	"It is also great when the digital world breaks into the real world " (SK)
Student Learning		Students create authentic, not only abstract artefacts				0.0	2	1		5.3	3				0.0				0.0	"But the important thing is that it has some sort of end product because that does not occur much in school"(SK)
Studen	Authentic learning	Promotes authentic learning	1	3		12.5	1	1	1	7.0	D	2			11.8				0.0	"Knowledge is directly linked to life, and whatever we learn, we can apply it to other areas." (GR)
		Practical use of the knowledge learned in music theory				0.0			1	1.8	3				0.0				0.0	"When I teach music theory with the piano, for example, when I teach the length of a note, I may teach it in combination with some robot's technique. Or, the robot may be used to play a melody for the students to write it down." (SK)

Table 3.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ1.3.

FERTILE – Public

Theme	Code I	Code II		Gre (N=:		-			val =5'			R	lep	Czecl ublic =17)			Spai N=2		Quotes
		ER acts as a link between many subjects	1			3.1	1	1 1	-	5.3			1	5	.9				"Robotics can act as a core around various activities with different objectives, to link several subjects." (GR)
practice	Effective teaching (educator	Art enriches any subject			2	6.3				0.0	1	2		17	7.6			0.0	"Art helps you conceptualize new ideas, and it helps the students a lot."(GR)
cator	knowledge. Strategies,	Easier to combine ER with Arts than other subjects				0.0	1			1.8				0	.0			0.0	"If I'm looking for a connection, maybe it's more in the artistic field than in other subjects" (SK)
Edu	and conduct)	Helps educators to create inclusive activities (e.g. for visually impaired students)				0.0		1	-	1.8				0	.0	2		6.9	"Robotics enable us to create accessible activities. For example, Scratch enabled me to create a story that students interact with the computer using the keyboard rather than the visual puppet." (SP)

T1.4 The support required

IQ1.4 What type of support do educators require to design interdisciplinary activities combining ER with Art?

The analysis of the educators' responses on the type of support they need when organising activities combining activities of ER and Art, identified four different themes (see Table 4.A, column 'Theme'):

- Curriculum Issues,
- Educational context,
- Learning Content, and
- Design Issues

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 4.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 4.B (see Table 4.B, columns 'Code I', 'Code II', 'Quotes').

We note that Greek educators focused more on issues related to *interdisciplinary collaboration* (34.2%). The same issues were also noted in Slovakia (11.8%), the Czech Republic (15.8%) and Spain (13%) (see Table 4.A). Specifically, the educators mentioned the need to (i) cultivate collaboration among educators through a collaboration framework, (ii) share students' information such as interests and knowledge level, and (iii) exchange ideas through forums (see Table 3.B).

In Slovakia (31.4%) and the Czech Republic (31.6%), the *need for a repository* has been mentioned most often (see Table 4.A). Specifically, educators required exemplar activities, lesson plans, graded activities' collection (levels), and a repository for sharing activities among educators (see Table 4.B).

The Spanish educators' responses (39.1%) highly indicated that support is needed in school *management issues* (see Table 4.A). For example, they asked (i) for technical experts to assist them and (ii) to have a flexible school timetable (see Table 4.B).

Theme	Code I			ire N=				Slo (1		ak 51				Rej	pu	zech blic 19)			-	aiı :23	
		Р	S	H	A	%	Р	S	Н	A	%	Р	S	Н	A	%	Р	S	H	A	%
m	Time allocation	1	5			15.8	2	2		1	9.8					0.0	2	2			17.4
Curriculum Issues	Exemplar matches the Curriculum					0.0	1				2.0					0.0					0.0
п	School management	3	4		1	21.1	1	4	2	2	17.6			1		5.3	6	3			39.1
Educational context	Interdisciplinary collaboration	4	7	1	1	34.2	2	4			11.8		2	1		15.8	1	1	1		13.0
con	Educator training	1	2	1		10.5	3	1	1		9.8	1	3			21.1	3	1			17.4
H	Educator workload				2	5.3		1	1		3.9					0.0					0.0
ning cent	Teaching Materials					0.0		2			3.9		1	0		5.3		2			8.7
Learning Content	Repository	2	3			13.2	4	11	1		31.4		3	3		31.6					0.0
Design Issues	Methodology					0.0		4	1		9.8					0.0		1			4.3

Table 4.A. Two-level coding of educators' responses on the type of support they need when organising activities combining ER with Arts (IQ1.4).

Theme	Code I	Code II			ree N=3				oval I=5	kia 1)		Re	e Cz pub I=19				oaiı =23		Quotes
			Р	S]	H A	%	P S	S I	H A	%	Р	S I	H A	%	P	S H	[A	%	
		Financial support	3	2		13.2	1	2	1 1	9.8				0.0	2	2		17.4	"The support needed is mainly financial" (GR)
	ient	Less bureaucracy				0.0			1	2.0			1	5.3				0.0	"eliminate any bureaucracy, because, for example, when I want to do the team project, I don't know how to pay for the students' purchases" (SK)
	School management	Two educators teaching the same subject (2 educators for 1 class)				0.0		1		2.0				0.0				0.0	"a class where there is a physicist, a chemist and a computer scientist at the same time or at least two teachers who teach one subject." (SK)
<u>ц</u>	1 100	Sufficient time allocation				0.0		1		2.0				0.0				0.0	"In the time allotted for it, so it's unfeasible" (SK)
context	Sch	Need of technical experts				0.0			1	2.0				0.0	2			8.7	" an expert in educational robotics or electronics topics." (SP)
		School organization (flexible schedule)		2	1	7.9				0.0				0.0	2	1		13.0	" to have the school administration's support regarding the school's timetable." (GR)
Educational	nary on	Cultivate collaboration among educators (art-primary-ICT educators)	3	7	1	28.9	2	4		11.8	}	2	1	15.8	1	1 1		13.0	"You need to somehow get in touch with those specialists in that other subject." (SK)
Ed	Interdisciplinary collaboration	Educators sharing students' profile information (e.g., interests and knowledge level)	1			2.6				0.0				0.0				0.0	"To know the knowledge level of all your students, you need to share information with your colleagues. " (GR)
	Inte co	Forum for exchanging ideas			1	2.6				0.0				0.0				0.0	" participate in a community to exchange ideas." (GR)
	Educator training	Need for educator training: Seminars	1	2		7.9	2	1	1	7.8	1	3		21.1	3	1		17.4	" summer schools for educators. To get training and share practice." (CZ)
	Educatoi training	Conferences			1	2.6	1			2.0				0.0				0.0	"Participating in conferences always helps." (GR)

Table 4.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ1.4.

Theme	Code I	Code II		Gree N=3				lova [N=]			F	he (Repr (N=	ub				pai N=2		Quotes
			P S	5 H	A 9	%]	P S	H	A	%	P S	H	A	%	P	S	H A	%	
		Need for exemplar activities	1 2	2	7	.9	2 5	1	1	5.7	1	1		10.5				0.0	"Having access to exemplar activities helps."(SK)
tent	~	Lesson plans			0	.0	2			3.9				0.0				0.0	"It would be nice to have lesson plans and worksheets" (SK)
g Con	S	Graded activities collection (levels)			0	.0	1 3		7	7.8				0.0				0.0	" some kind of collection divided into levels, e.g., for beginners, intermediate " (SK)
earnin	Repo	Repository for sharing activities among educators	1 1	L	5	.3	1 1			3.9	1	1		10.5				0.0	" to leave a documentation of what he has done during the year so that someone else can see it." (GR)
Le		Examples of good practice			0	.0			(0.0	1	1		10.5				0.0	" suitable activities with specific instructions for a beginner or someone with little experience."

Issue 2 What experience do educators have with ER simulators and ICT for blended learning?

T2.1 The Design Ideas

IQ2.1 How have educators designed ER activities utilising ER simulators and ICT for blended learning?

Many educators focused on the technologies they employed in online teaching. The analysis of the educators' responses on technologies used in online classes identified three different themes (see Table 5.A, column 'Theme'):

- Asynchronous Technologies,
- Synchronous Technologies, and
- Online Learning Implementation

The "Online Learning Implementation" theme is further analysed in two levels of detail reflected in Codes I and Codes II (see Table 5.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 5.B (see Table 5.B, columns 'Code I', 'Code II', 'Quotes'). The themes "Asynchronous Technologies" and "Synchronous Technologies" are not presented in more detail (specific technologies) because this is beyond the scope of this study.

The Slovak and Spanish educators focused more on what technologies they used in combination with ER simulators rather than on implementing the relevant educational activities (see Table 5.A, Themes: 'Asynchronous technologies', 'Synchronous technologies'). Specifically, the Greek, Spanish and Slovak educators who used asynchronous and synchronous communication technologies (GR 23.8%, SK 64.0%, SP 44.4%) leaned towards asynchronous communication. In comparison, the Czech educators leaned more towards synchronous communication (41.7%) (see Table 5.A).

Indeed, as far as the implementation of asynchronous online learning is concerned, mainly the Greek educators provided some insights (26.2%) (see Table 5.A, Theme 'Online Learning Implementation' & Table 5.B, Code I: 'Asynchronously ER/ART: Study'). They reported working asynchronously on ER activities related to studying a robot function and teaching software. Also, they worked asynchronously on Art activities related to studying art history, using repositories for online art activities. Notably, they implemented asynchronous individual activities instead of collaborative ones (see Table 5.B, Code I: 'Asynchronous ER/ART: Study'). In addition, in online synchronous classes, educators were demonstrating (Table 5.A, Code I: 'Synchronously ER/ART: Demonstration') (CZ 25.0%, GR 19.0%) either art creations (see Table 5.B, Code II: 'Real-time art demonstration') or the function of robotic constructions in real-time (see Table 5.B, Code II: 'Synchronous communication for showing robots').

Moreover, regarding online learning design, two main suggestions emerged from the educators' responses according to their experience:

- 1. in online synchronous classes, educators were demonstrating either art creations (Table 5.A, Code I: 'Synchronously ER/ART: Demonstration') or the function of robotic constructions in real-time (see Table 5.B, Code II: 'Synchronous communication for showing robots'),
- 2. in online asynchronous classes, educators enhanced students' home study (Table 5.A, Code I: 'Asynchronously ER/ART: Study').

Theme	'heme Code I									ak 25	tia 5)		Re	ep		ech lic 2)		Sp	pain (N=9)			
		Ρ	S	Η	A	%	P	S	Η	A	%	P	S	Η	A	%	P	S	Η	A	%	
Asynchronous technologies	blog /email / padlet/Teams Class/Moodle / Google Classroom/ EduPage/Wiki/LAMS/Replit	3	3	3	1	23.8	5	6	4	1	64.0		1			8.3	1	2	1		44.4	
Synchronous technologies	Teams / Zoom / Webex / WhatsApp / Micro: bit classroom / Google Meet / Classter / Among Us	1	1	3	3	19.0	2	5	1	1	36.0	1	3	1		41.7	2		1		33.3	
uing tion	Synchronously ER/ART: Demonstration	2	1	2	3	19.0					0.0		1	2		25.0					0.0	
Learr nentaí	Asynchronously ER/ART: Study	1	2		8	26.2					0.0	1	1			16.7					0.0	
Online Learning Implementation	Synchronously/Asynchronously ER: Programming, programming unplugged		1	2		11.9					0.0			1		8.3	1	1			22.2	

Table 5.A. Two-level coding of educators' responses on how they designed ER activities utilising ER simulators and ICT in a blended learning context. (IQ2.1).

Theme	Code I	Code II			ree N=4				val =2	-		Re	epı	Czec ubli 12)	c			Spain (N=9)		Quotes
			Р	S	H A	%	Р	S]	H A	%	Р	S	H	A	%	Р	S	H	A	%
	Correction or she	Real-time art demonstration			2	4.8				0.0		1	1		16. 7					"The students presented their dancing robots. Some 0.0 turned on their webcam and showed their robots in real- time. Others had prepared a movie and shared it." (CZ)
	Synchronously ER/ART Demonstration	Synchronous	2	1	2	11.9)			0.0			1		8.3					"Since we had worked f2f with Arduino, in the online 0.0 context, we used Tinkercad to show robots as it fully supports Arduino." (CZ)
u		Educator uses a second camera			1	2.4				0.0					0.0					0.0 I used two cameras. One to share instructions with students and the other to show what I was drawing. (GR)
entatic		Study the robot function asynchronously		1		2.4				0.0					0.0					0.0 "take home the robot to familiarize herself and present how it works. (GR)
pleme		Online for the history of Art		1	2	7.1				0.0					0.0					0.0 ^{"I} presented online some theoretical stuff about the history of art and enriched them with quizzes." (GR)
ing Im		Creating instructional Art videos (tutorials)			1	2.4				0.0					0.0					0.0 " made YouTube videos like "How to make a pencil box" as tutorials which we uploaded on Clusters. (GR)
Learn	Asynchronously	Utilize a repository for Arts activities			2	4.8				0.0					0.0					0.0 " presented videos about artists' works a lot were available in the e-learning repository." (GR)
Online Learning Implementation	ER/ART Study	Online is better for individual activities (lower primary)	1		1	4.8				0.0					0.0					0.0 " distance learning to actualize activities performed by students individually (GR)
		Online for teaching software (photoshop, premiere)			2	4.8				0.0	1	1			16. 7				("I found a suitable game called LogicBox. It is similar to what we did in Lego, where you build a robot and program it to follow a route, classic line followers, as we do in class. 0.0 Its advantage is that it is not programmed in the form of a programming language, but connected using logic circuits." However, I could not force anyone to buy a game for 500. (CZ)

Table 5.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ2.1.

Report on educators' profiling

FERTILE – Public

T2.2 The Challenges

IQ2.2 What challenges do educators face when utilising ER simulators and ICT for blended learning?

The analysis of the educators' responses about the challenges they faced when utilising ER simulators for blended learning implications of organising interdisciplinary activities of ER and Art, identified four different themes (see Table 6.A, column 'Theme'):

- Technical Issues,
- Design Issues,
- Student Issues, and
- No Issues

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 6.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 6.B (see Table 6.B, columns 'Code I', 'Code II', 'Quotes').

The difficulties encountered by educators in the four countries were distributed across technical, design and student issues (see Table 6.A, column "Theme").

The most prominent challenge for the Greek and Spanish educators was students' *engagement in blended learning activities with ER simulators* (GR:23.7%, SP:41.7%) (see Table 6.A, Theme: 'Students Issues'). Specifically, the educators reported difficulties in engaging students regarding both synchronous (SP:16.7%) and asynchronous sessions (GR:7.9%) (see Table 6.B). Moreover, they reported that it was more challenging to promote engagement in lower primary (GR:2.6%, SP:8.3%) than in middle and upper-primary education (GR:2.6%) (see Table 6.B). Finally, the educators reported limited students' participation (GR:5.3%, CZ:13.8%, SP:16.7%) (see Table 6.B). However, it is worth considering that even when students' participation in online classes was achieved, students were not actively engaged (GR:5.3%) (see Table 6.B).

The Slovak educators' responses (23.1%) emphasised the challenge of the *availability of appropriate robotic technologies* (see Table 6.A Code I: 'Appropriate Robotics technologies (simulators) availability'). Remarkably, they reported that students using simulators resulted in missing the use of physical robots' sensors (10.3%) (see Table 6. B Code II: 'Simulators missing sensors') and other additional components (2.6%) (see Table 6. B Code II: 'Simulators missing additional components'). Also, they claimed that in a face-to-face teaching context, there were not enough robots to distribute to students to study at home (10.3%) (see Table 6.B Code II'' Not enough robotic kits to distribute to the students').

The Czech educators' responses (27.6%) raised the issue of designing blended learning with simulators (see Table 6.A Code I: "Online Modality"). As seen in Table 6.B, the educators highlighted the following problematic issues: i) *communication management* (10.3%), ii) the *lack of non-verbal communication* (6.9%), iii) the *lack of collaboration* (6.9%) and (iii) that online teaching may be *difficult in terms of time* (3.4%). As a result, educators expressed concerns about various design and technical issues, bringing to the fore the challenge of engaging students using simulators.

Theme	Code I				ec =38					vak =39	kia 9)	1	R	ep		ech olic 9)	Spain (N=12)					
		Р	S	H	A	%	Р	S	Н	A	%	Р	S	H	A	%	Р	S	H	A	%	
cal s	Appropriate Robotics technologies (simulators) availability			3		7.9	2	7			23.1		1			3.4					0.0	
Technical Issues	Appropriate ICT technologies availability	3				7.9	2	3	2	1	20.5	2	3	1		20.7	1	1			16.7	
L	ICT malfunction	1			1	5.3		4	1		12.8	1	4	1		20.7					0.0	
	Online modality	5				13.2	3	1	1	1	15.4	3	3	1	1	27.6					0.0	
nes	ER simulators			1		2.6	1		1		5.1			1		3.4					0.0	
Design Issues	Accommodate different student profiles				1	2.6	1	1	1		7.7					0.0	1				8.3	
Desi	School management	1				2.6	1				2.6		1			3.4					0.0	
	Digital Material		2		1	7.9		1			2.6					0.0					0.0	
	Engagement	5	2		2	23.7		1	2		7.7	1	2	1	1	17.2	3	2			41.7	
itudent Issues	Adaptability		1	1		5.3					0.0			1		3.4					0.0	
Student Issues	Ability to follow instructions		1			2.6					0.0					0.0					0.0	
•1	Family interventions	2	2			10.5	1				2.6					0.0	1	3			33.3	
No Issues	No difficulties	1	2			7.9					0.0					0.0					0.0	

Table 6.A Two-level coding of educators' responses on the challenges they faced when utilising ER simulators for blended learning (IQ2.2).

Themes	Code I	Code II			ree =3					aki 39]			R	1e (ep) [N=	ubl				Spai N=1		Quotes
			Р	S	H A	%	P	S	H	A	%	Р	S	Η	A	%	P	S]	H A	%	6
es		Simulators missing sensors			1	2.6	5 1	3		1	10.3		1			3.4				0) " ER simulators cannot simulate many robotic sensors " (SK)
Technical Issues	Appropriate Robotics technologies (simulators)	Simulators missing additional components			1	2.6	,	1			2.6									0	"As it was not possible to implement in tha simulator, I looked for other simulator supporting adequate components." (SK)
Techı		Not enough robotic kits to distribute to the students			1	2.6	5 1	3		1	10.3									0	"We did not have enough construction kits to provide to the students for them to take home. (SK)
Si		Communication management in a synchronous session (lower primary)	3			7.9)				0	2		1		10.3				0	" did not participate because he was too embarrassed to speak. My difficulty was more in managing the online class than the activity itself." (GR)
Design Issues	Online modality	Lack of nonverbal communication				0	2			1	7.7	1	1			6.9				0	"I did not know if they understood my instructions. The non-verbal communication was absent, and therefore, I did not know how they were doing." (SK)
		Time limitation/challenging				0	1	1	1		7.7		1			3.4				0	"students performed slower. I did not address as many topics as in a normal f2f class" (SK)
		Lack of collaboration	2			5.3					0		1		1	6.9				0) " there is no teamwork ." (GR)

Table 6.B Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ2.2.

Themes	Code I	Code II				ece 88)				val =39	kia 9)		F	Rep		ech lic 9)		Spain (N=12)			Quotes			
			Р	S	H	A %	6 I	P S	H	A	%	P	' S	H	A	%	Р	S	H A	%				
		Lack of engagement in synchronous sessions				C)	1	2		7.7						1	1		16.7	They did not participate because they did not know how to navigate designated links or forgot instructions. (GR)			
S		Lack of engagement in asynchronous sessions	1	2		7.	9				0		1			3.4				0	" when we are working on tinkering, assembling, playing, building, and all that, we may use ER simulators. (SP)			
Student Issues		Promoting students' engagement in a synchronous session (lower primary)	1			2.	6				0						1			8.3	"Students were not as independent as required. I had to share my screen for instructions and respond to their queries simultaneously." (SP)			
Stud		No engagement difficulties for students of middle and upper primary school (age 8-11)	1			2.	6				0									0	" with the grown-ups, 4th, 5th, 6th grade, we were fine." (GR)			
		Limited students participation	2			5.	3				0	1	1	1	1	13.8	1	1		16.7	"Unfortunately, students participated scarcely." (GR)			
		Students could not participate interactively in online classes				2 5.	3				0									0	"The kids were not participating. They were just watching." (GR)			
No Issues	No difficulties	Not important difficulties	1	2		7.	9				0									0	I expected to have difficulties. Nevertheless, being honest, I did not have any special ones (GR)			
T2.3 The implications

IQ2.3 What are the implications of utilising ER simulators and ICT for blended learning?

The analysis of the educators' responses about the implications of utilising ER simulators and ICT for blended learning implications, identified three different themes (see Table 7.A, column 'Theme'):

- ➤ Student engagement,
- ➢ Educator Practice, and
- ➤ No Implications

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 7.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 7.B (see Table 7.B, columns 'Code I', 'Code II', 'Quotes').

We noted a notable percentage of Greek (53.5%), Czech (58.3%), and Spanish (100%) educators' responses who deemed having no benefits from utilising ER for online learning. However, several responses supported the potential of ER simulators for blended learning.

An interesting finding about a positive effect of using ER simulators was implementing *effective teaching practices* (GR 26.7%, SK 58.8%, CZ 25%) (see Table 7.A). In particular, (see Table 7.B) the responses included several perspectives of effective teaching:

- (i) provide educators with the flexibility to teach from another region (SK 10%) (see Table 7.B, Code II: 'Flexible educator - can teach from another city'),
- (ii)) save educators' time (see Table 2.B, Code II 'Synchronous sessions more efficient than f2f'),
- (iii) allow a learning activity's recording (see Table 2.B, Code II 'Online recording of student activity'),
- (iv) facilitate educators to see students' work (see Table 2.B, Code II 'Educator sees all students' projects at once'),
- (v) resolve the lack of physical robots (see Table 2.B, Code II 'Use of simulators when there is a lack of physical robots'),
- (vi) substitute ER f2f practice (see Table 2.B, Code II 'No need to skip ER'),
- (vii) facilitate educators to carry out activities that are not easily feasible in real life (see Table 2.B, Code II: 'Activities that are not feasible in real life'), and
- (viii) increase educators' digital competences (see Table 2.B, Code II 'Increase teacher's digital competence').

Theme	Code I			Gre N=				-	-	ak 17	ia 7)			Re	pu	zech blic 12)	S	pa	in	(N	I=5)
		P	S	Н	A	%	Р	S	Н	A	%	Р	S	H	A	%	Р	S	H	A	%
Student learning	Collaborative learning					0.0		4			23.5					0.0					0.0
Student Engagement	Behavioural	2			1	20.0	1				5.9		1			8.3					0.0
	Mindset				1	6.7	1				5.9			1		8.3				П	0.0
or	Collaboration					0.0			1		5.9					0.0					0.0
Educator Practice	Effective teaching (educators' knowledge, strategies and conduct)	2	1			26.7	1	6	3		58.8		2	1		25.0					0.0
No Implications	No benefits from online learning	3	5			53.3					0.0	4	2	1		58.3	3	1	1		100

Table 7. A. Two-level coding of educators' responses on the implications of utilising ER simulators and ICT for blended learning (IQ2.3).

Themes	Code I	Code II			reec [=1!				vak =17			F		ouł	ech olic 2)				aiı =5		Quotes
			P S	S H	I A	%	P	S H	I A	%	P	S	H	A	%	P	'S	H	A	%	
		Flexible educator - can teach from another city				0.0		1		10.0					0.0					0.0	" I could travel to my husband's family back east and teach from there." (SK)
		Online recording of student activity	1	1		6.3				0.0					0.0					0.0	" the platform records students' activity" (GR)
		Use of simulators when there is a lack of physical robots				0.0		2		20.0					0.0					0.0	" as we cannot afford to buy robots, we use ER simulators in tablets" (CZ)
tice	Effective	Activities that are not feasible in real life				0.0		1 1		20.0					0.0					0.0	"e.g. Mars exploration - you cannot realistically build a Mars rover in a classroom" (SK)
Educator practice	teaching (educator knowledge, strategies, and conduct)	No need to skip ER				0.0		1		10.0					0.0					0.0	"The school has to deal with whether it can lend robots to students to take home during distance learning and whether to teach robotics at all. This is not the case with software stuff. A simulator will certainly help in this case." (SK)
		Educator sees all students' projects at once				0.0	1			10.0					0.0					0.0	" that I am taking advantage of being able to see all students' projects. And I can also send it out to everybody" (SK)
		Synchronous sessions are more efficient than f2f	2			12.5		2 1	-	30.0					0.0					0.0	" although I prefer face-to-face interaction, I acknowledge that online sessions save me some class time." (GR)
		Increase teacher`s digital competence				0.0				0.0		2	1		30.0					0.0	"so the schools moved forward. Otherwise, it would still be pencil and paper." (CZ)
No Implications	No benefits	No benefits from online learning	1 5	5		37.5				0.0	2	2			40.0	3	1	1		100	"In primary education, the pandemic's aftermath is that online is not the solution" (SP) " I do not think that robotics can be done remotely. When you practice STEM, you simply miss the "M" of Mechanics." (GR)

Table 7.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ2.3.

Report on educators' profiling

T2.4 The mindset

IQ2.4 How can educators' mindset shift towards integrating ER simulators and ICT for blended learning?

The analysis of the educators' responses on how can educators' mindset shift towards integrating ER simulators and ICT for blended learning, identified four different themes (see Table 8.A, column 'Theme'):

- Learning Content,
- Collaboration,
- Technology utilisation, and
- Educational Practice

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 8.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 8.B (see Table 8.B, columns 'Code I', 'Code II', 'Quotes').

During the focus groups and interview sessions, the educators came up with proposals to change the educators' mindset toward integrating ER simulators and ICT for blended learning. They mainly focused on teaching strategies, meaning ideas related to *online learning* (SK:66.7%), *complementary online activities for students* (SP:37.5%, GR:20%), and *flipped classroom* (GR:40%, SK:33.3%) (see Table 8.A).

The responses of Czech educators (37.5%) highlight the potential of using simulators instead of physical robots (see Table 8.A, Theme: 'Technology utilisation').

Regarding online learning, the educators stated that online sessions could alternate some face-to-face courses. They also stated that online courses might be an adequate alternative when students do not have the opportunity to participate in face-to-face sessions, such as in case of illness (see Table 8.B, Code I: 'Online Learning').

Regarding complementary online activities, the educators proposed (i) having students work asynchronously with simulators as homework (see Table 8.A, Code I 'Complementary Online activities for students' and Table 8.B Code II: 'Work asynchronously with simulators as homework') (CZ:25%, GR:15%) and (ii) providing extra asynchronous activities for those interested (see Table 8.B, Code II: 'Complementary Online activities for students' and Table 8.B, Code II: 'Complementary Online activities for students' and Table 8.B, Code II: 'Complementary Online activities for students' and Table 8.B, Code II: 'Provide extra asynchronous activities for those interested') (CZ:12.5%).

The educators proposed two cases for implementing a flipped classroom to extend the face-to-face lessons. The first case involved online asynchronous activities (GR 10%, SK 33.3%). The second case involved activities where the programming is done at home, and then the implementation in the physical robot is done in the classroom (GR 30%) (See Table 8.B, Code I: 'Flipped classroom').

Thus, we observed that teachers pursue the potential offered by the simulators by proposing mainly ideas related to extending the physical classroom with online activities.

Theme	Code I				eed =2(ov [N:		cia)		R	ep		ech lic)	Sp	air	1 (]	N=	0)
		P	S	H	[A	%	P	S	Η	A	%	P	S	H	A	%	Р	S	Η	A	%
Learning Content	Online content delivery	1	1	1	-	15.0					0.0		2			25.0					0.0
Collabora tion	Educational community collaboration	2				10.0					0.0					0.0					0.0
Technology utilisation	ER simulators instead of physical robots	1	2			15.0					0.0	1	1	1		37.5					0.0
b 0 1 0	Online learning					0.0		1		1	66.7					0.0					0.0
Teaching strategies	Complementary Online activities for students	3		1		20.0					0.0		3			37.5					0.0
Tea stra	Flipped classroom	3	5			40.0			1		33.3					0.0					0.0

Table 8.A Two-level coding of educators' responses on how can educators' mindset shift towards integrating ER simulators and ICT for blended learning (IQ2.4).

Theme	Code I	Code II			ee =2	ce 0)		lov (N		kia 8)		R	ep	Cze ubl =8)	ic		-	air =0		Quotes
			Р	S H	ΗA	%	P S	S H	A	%	Р	S	H	А	%	Р	S]	H A	%	
Learning Content	Online content delivery	Means of content delivery (blog, eclass, email)	1	1 1	Ĺ	15.0	2	2		25.0					0.0				0	"Since time is limited, I used eclass." (GR)
logy ion	ER simulators	Simulators are low budget devices (microbit, edison)	1			5.0				0.0	1	1	1		37.5				0	"…economic benefit. I do not need to buy robotic kits" (CZ)
Technology utilisation	instead of physical robots	Simulators where physical robots are not provided		2		10.0				0.0					0.0				0	" we do not have the hardware, so we turn to simulators." (GR)
		To alternate online and F2F lessons				0.0	-	1		33.3					0.0				0	"I can imagine, in principle, alternating online and f2f" (SK)
	Online learning	Online classes for ill students				0.0			1	33.3					0.0				0	"Normally, they would not come to class because they were slightly ill. But, they can connect online from home." (SK)
Strategies	Complementary Online activities	Work asynchronously with simulators as homework	2	1	L	15.0				0.0		2			25.0				0	" working on it at home and then coming back and being better prepared." (GR)
ıg Strai	for students	Provide extra asynchronous activities for those interested	1			5.0				0.0		1			12.5				0	" give them some optional tasks on easy subjects as homework" (GR)
Teaching (Extent the f2f lessons with online asynchronous activities, e.g. theory to be done online and practice to be done f2	2			10.0		1		33.3					0.0				0	" give them homework on the weekend to work on the basic IT concepts, and then discuss during the lesson at school." (GR)
		A flipped classroom by doing the programming at home and the implementation in the physical robot in the classroom.	1	5		30.0				0.0					0.0				0	" do some preparation at home, e.g., code for the problem you have set for them, and in school, they can download and run it." (GR)

Table 8.B Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ2.3.

Report on educators' profiling

T2.5 The support required

IQ2.5 What type of support do educators require to utilise ER simulators and ICT for blended learning?

The analysis of the educators' responses on the type of support educators need when integrating ER simulators and ICT for blended learning, identified four different themes (see Table 9.A, column 'Theme'):

- Educational context,
- ➤ Technical Issues
- ➤ Design Issues, and
- ➤ Learning Content

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 9.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 9.B (see Table 9.B, columns 'Code I', 'Code II', 'Quotes').

Most Czech and Greek educators' responses asked for support related to the educational context. The educational context included *school management* (see Table 9.A)(CZ:33.3%, GR:47.6%) requiring financial support for technologies (see Table 9.B) (CZ:22.2%, GR:28.6%, SK:8.9%), and more hours available for ER lessons (SK:6.7%, GR:4.8%) (see Table 9.A). Also, regarding *educator training* (CZ:33.3%, GR:19%), they highlighted the need for training through seminars (CZ:22.2%, GR:14.3%) (see Table 9.B).

Moreover, the Spanish educators' responses included two unique requests concerning **methodology** (see Table 9.A). Some Slovak (8. 9%) and Greek (9.5%) educators also made the same requests. Moreover, the Spanish educators expressed the need for a design methodology for using simulators in a blended learning context (see Table 9.B). Finally, Slovak educators (22.2%) asked for support in terms of the *availability of appropriate robotic technologies* (see Table 9.A, Codes I), and in particular, required the provision of sufficient Internet connection (4.4%) as well as free access to learning platforms/software (17.8%) (see Table 9.B).

Therefore, we observed that educators asked for several means of support. Still, most responses concerned the *financial support* of technologies and the need to *train educators* to design lessons using ER simulators in a blended learning context.

Table 9.A Two-level coding of educators' responses on the type of support they require when utilising ER simulators and ICT for blended learning (IQ2.5).

Theme	Code I			Gre N=				_	-	val =4!	kia 5)			ep	-	ech olic 9)		Spa	ain	(N:	=2)
		P	S	H	A	%	P	S	H	A	%	P	S	H	A	%	Ρ	S	H	Α	%
Educational Context	School management	3	4	2	1	47.6	2	3		2	15.6	2		1		33.3					0.0
Educ Co	Educator training		2	2		19.0	3	2	1	2	17.8	1	2			33.3					0.0
u sa	ER simulators					0.0		3	1		8.9										0.0
Design Issues	Materials					0.0	2	4	1	1	17.8										0.0
	Methodology	2				9.5		4			8.9						2				100.0
Technical Issues	Appropriate Robotics technologies availability			1	1	9.5		1	1		4.4										0.0
Tec	Appropriate ICT technologies availability			1		4.8	2	5	2	1	22.2		1			11.1					0.0
Learning Content	Repository		2			9.5		1		1	4.4		2			22.2					0

Theme	Code I	Code II			ree [=2				oval 1=4				Rep		ech olic 9)			pai N=2		Quotes
			P S	S I	H A	%	Р	S]	H A	%	P	' S	H	A	%	P S	S I	H A	%	
		Financial support for technologies	3 3	3		28.6	1	2	1	8.9	1	-	1		22.2				0.0	" not enough robots for the kids to practice. We keep asking the school management" GR)
		Hybrid Classrooms			1	4.8				0.0					0.0				0.0	"have camerasform hybrid spaces, be able to move around and interact. "(GR)
ext	School management	Assistants for older teachers to organise online teaching			1	4.8				0.0					0.0				0.0	" someone to assist teachers. Someone who knows how to use the tools and assist them." (GR)
Educational context		Need for technical experts			1	4.8				0.0	1	-			11.1				0.0	"the support we had in quarantine from an IT colleague. I was communicating on Viber to ask her what to do That was really helpful." (GR)
atio		More time/hours		1		4.8	1	1	1	6.7					0.0				0.0	"in the time allotted, it's basically unfeasible" (SK)
Educ		Need for teacher training: Seminars		2	1	14.3			1	2.2	1	1			22.2				0.0	"I constantly need training" (GR)
	Teacher	Need for teacher training				0.0	3	2	1	13.3	3				0.0				0.0	" some webinars in addition to the materials" (SK)
	training	Redesigning the courses to include the new tools/methods			1	4.8			1	2.2		1			11.1				0.0	"update and reformulate courses."(GR)
Design Issues	Mathadalagu	Need for a design methodology	2			9.5		2		4.4					0.0	2				A methodology that prioritizes developing projects over the actual subject topics." (SP)
Des Issi	Methodology	Methodology expert				0.0		1		2.2					0.0				0.0	" an expert to consult directly regarding an appropriate design methodology" (SK)
Technical Issues	Appropriate ICT	Sufficient internet connection				0.0		1	1	4.4					0.0				0.0	" there were 3 of us working online, so the network was overloaded" (SK)
Tech Issi	technologies availability	Free access to learning platforms/software			1	4.8	2	4	1 1	17.8	3	1			11.1				0.0	" provide free software. To have access to several ER simulators."(GR)

Table 9.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ2.5

Report on educators' profiling

Issue 3. What experience do educators have with ER and Computational Thinking?

T3.1 The Design ideas

IQ3.1 How have educators designed ER activities to promote students' Computational Thinking?

The analysis of the educators' responses about their experience or ideas when designing ER activities to promote students' Computational Thinking, identified seven different themes (see Table 10.A, column 'Theme'):

- CT Data representation promotion,
- CT Algorithmic Thinking promotion,
- CT Decomposition promotion,
- CT Abstraction promotion,
- CT Pattern Recognition promotion,
- CT Conceptualization, and
- No experience

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 10.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 10.B (see Table 10.B, columns 'Code I', 'Code II', 'Quotes').

Computational thinking seems to be approached initially as problem-solving and/or algorithmic thinking eliminating the various dimensions of abstraction, decomposition, evaluation, etc. Therefore, we observed that educators perceive computational thinking as a problem-solving process and associate it directly with programming as a way of cultivating algorithmic thinking. Many primary and secondary teachers referred to Computational Thinking mainly as a problem-solving process (see Table 10.B). Although they described activities that were used to cultivate the various dimensions of Computational Thinking, except for Algorithmic Thinking (see Table 10.B), most did not refer to terms such as Abstraction, Decomposition, Evaluation, etc. The researchers were the ones who often had to associate the activities with the corresponding concepts.

When explaining in detail the activities they designed, two important points for analysis emerged: most frequently, the educators design CT activities either to promote CT Conceptualisation or Algorithmic Thinking (see Table 10.A).

Regarding CT Conceptualization the responses (see Table 10.B) mainly focused on the *problem-solving dimension of CT* (SP:41.7%, CZ:31.8%, GR:26.7%, SK:8.9%). Most educators mentioned that they designed "Problem-solving activities with ER" (SP:33.3%, CZ:22.7%, GR:13.3%. SK:8.9%) (see Table 10.B, Code II: 'Problem-solving activities with ER').

The Slovak, Spanish and Czech educators reported designing activities related to Algorithmic Thinking promotion (see Table 10.B) focusing on its main component, "*Input/ Output Data*" (SK 42.2%, SP 33.3%, CZ 22.7%, GR: 13.3%). These activities addressed general algorithmic concepts such as ordered steps (SK: 6.7%), or more specific programming concepts such as sequences (SK: 13.3%), conditions (SK: 8.9%) and variables (SK: 6.7%, CZ:13.6%) (see Table 10.B).

Some educators (GR:13.3%, SK:2.2%, CZ:4.5%) stated having no CT experience (see Table 10.A, Theme: 'No CT experience'). In this line, a finding not included in the FERTILE coding scheme is worth

mentioning. This finding involved the underlying researchers' observation that educators, even those with an ICT background) had several misconceptions about CT.

Theme	Code I			re N=:					ova N=4				R	ep	Czec ubli =22)	ic	S	pa	in	(N=	:12)
		Р	S	H	A	%	Р	S	H	A	%	Р	S	H	Α	%	Р	S	H	A	%
CT Data representatio n promotion	Datastore					0.0		2			4.4					0.0					0.0
CT I repres	Data process	1		2		10.0		2			4.4			1		4.5			1	1	16.7
nic	Input / Output data	4				13.3	5	14			42.2	2	2	1		22.7	3	1			33.3
CT Algorithmic Thinking promotion	Algorithmic construct (sequence, selection, and iteration)					0.0	2		1		6.7					0.0	1				8.3
CT A T pr	Debugging and Optimisation	1				3.3	1	1	1		6.7					0.0					0.0
CT Decomposi tion promotion	Analysis				1	3.3	4		2		13.3					0.0					0.0
CT Abstraction promotion	Control Abstraction	1				3.3					0.0					0.0					0.0
ern tion tion	Geometric figures as patterns	1		2		10.0		5			11.1		1		2	13.6					0.0
CT Pattern Recognition promotion	Colours as patterns			1		3.3					0.0			1		4.5					0.0
r eptu tion	Problem-solving	2	4	2		26.7	1	2	1		8.9	2	2	2	1	31.8	2	2		1	41.7
CT Conceptu alization	CT concepts		2	2		13.3					0.0		2	2		18.2					0.0
No CT experience		1	2		1	13.3				1	2.2	1				4.5					0.0

Table 10.A . Two-level coding of educators' responses on how they designed ER activities to promote
students' Computational Thinking (IQ3.1).

Themes	Code I	Code II		Gro (N:					val =4!			R	ie C epu N=2	blio				pai [=1		Quotes
			Р	S H	A	%	Р	S H	I A	%	Р	S	Н	A	%	Р	S H	H A	%	
uo		Variables				0.0	1	2		6,7		2	1		13.6				0.0	"with the younger pupils, what would be hard to explain, for example, the variable, they might understand easier with robotics" (SK)
omoti		Play unplugged code game (Cody Roby)	1			3.3				0.0	1		1		9.1				0.0	" I had used CobyRoby, the one made with cards, basically for algorithmic thinking." (GR)
CT Algorithmic Thinking promotion	Output data	Activities creating ordered steps (sequencing)				0.0	1	2		6,7	1				4.5				0.0	" Students have to realize that they cannot program the robot how they want they need to think about consequences of each step (CZ)
nic Th		Activities creating ordered steps	2			6.7		1		2,2					0.0	1	1		16.	" how they make a paper boat and how to select coloured clothes for a washing machine." (GR)
gorithr	Input /	Conditions (with sensors)				0.0	1	3		8,9					0.0				0.0	"Now remember the garage task, where we basically trained a conditional command" (SK)
CT Al _§		Loops				0.0	1	2		6,7					0.0				0.0	"quite nice use of repetition - cycle, it was quite nice there" (SK)
		Play music sound sensors, notes, sequences	1			3.3	1	4	1	13,3					0.0	1			8.3	" if we consider music, there are repetitions that make sense to code them" (SK)
zation	/ing	Authentic problem-solving activities without ER		2 1		10.0				0.0		1		1	9.1			1	8.3	"For example, we have the problem: I want to get up and go to my school. What steps do I need to take to go to my school?" (GR)
CT Conceptualization	Problem-solving	The problem-solving process (CT) to be used in the creation of artwork		1		3.3				0.0					0.0				0.0	" the point is for students to develop problem-solving skills to move on to synthesizing the solutions of the sub-problems. (GR)
CT Cor	Prol	Problem-solving activities with ER	2	1 1		13.3	1	2 1		8.9	2	1	2		22.7	2	2		33.	" consider alternative solutions and then either with b the simulation from the beebot or with the real beebot " (GR)

Table 10.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ3.1

Report on educators' profiling

3.2 The Challenges

IQ3.2 What challenges do educators face when designing ER activities to promote students' Computational Thinking?

The analysis of the educators' responses about the challenges they faced when designing ER activities to promote students' Computational Thinking identified six different themes (see Table 11.A, column 'Theme'):

- Design Issues,
- CT,
- Educational context,
- Curriculum Issues,
- Student Issues, and
- Technical Issues

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 11.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 11.B (see Table 11.B, columns 'Code I', 'Code II', 'Quotes').

Table 11 shows that most educators' responses were distributed on challenges around designing, educational context, and student issues.

Regarding design issues, many Greek educators' responses (30.8%) (see Table 11.A, Code I "*Effort*") indicated that additional workload (see Table 11.B, Code II "Teacher effort in designing the activities") is required to design and prepare ER activities aiming to foster computational thinking. The Czech educators' responses (26.7%) also highlighted a design issue, such as adapting the course to different profiles of students (see Table 11.A, Code I: 'Accommodate different student profiles') and specifically their cognitive level (see Table 11.B, Code II "Students' different level on CT").

The Slovak educators' responses focused more on students' issues, especially in the subject of *programming skills* (21.6%) (see Table 11.A), claiming mainly (8.1%) that students are often involved with concepts that they find hard to understand (see Table 11.B, Code II: 'Complex concepts - students cannot understand'). Furthermore, they highlighted issues related to student *engagement* (21.6%) (see Table 11.A), as students often lose interest due to, e.g., factors affecting the operation of robots (13.5%) (see Table 11.B, Code II "Demotivation because of factors influencing robots working").

Finally, many Spanish educators' responses (33.3%) and those of other countries (GR:23.1%, SK:13.5%, CZ:13.3%) converged on *school management* issues (see Table 11.A, Code I: 'School management'). In this context, the Spanish educators' responses highlighted again the financial problem of purchasing robotics technology (see Table 11.B, Code II "No money to buy robotic material"). For the same issue, other educators mentioned that there was insufficient time to carry out such activities (see Table 11.B, Code II: "Classroom time").

Therefore, we observe that Computational Thinking's promotion through ER activities entailed three significant challenges regarding (i) *designing and conducting ER activities* (workload and time required for designing and conducting lessons), (ii) *students' lacking programming skills*, and (iii) *financial issues* around acquiring and maintaining robotic technologies.

48

Theme	Code I			Gre N=				_	-	vak =37	cia 7)			Re	pu	zech blic l5)			Sp N=		
		Р	S	Η	A	%	Р	S	Η	A	%	Р	S	Η	A	%	Р	S	Η	A	%
	Accommodate different student profiles		1			7.7					0.0	1	2	1		26.7					0.0
Design	Effort	1	1	2		30.8		2	3		13.5			1		6.7		1		1	16.7
Issues	Choose appropriate technologies			1		7.7					0.0		1			6.7					0.0
	Digital Materials					0.0	1	3			10.8			1		6.7	1	1			16.7
СТ	CT Conceptualization		1	1		15.4		4	1		13.5	1		2		20.0			2		16.7
Educational context	School management		2	1		23.1	1	3	1		13.5		2			13.3	2	2			33.3
Curriculum Issues	Limitations					0.0					0.0					0.0	1			1	16.7
	Programming Skills					0.0	2	5	1		21.6					0.0					0.0
Student	Engagement					0.0	4	4			21.6					0.0					0.0
Issues	Ability to follow instructions		2			15.4	2				5.4		1			6.7					0.0
Technical Issues	Robot malfunction					0.0					0.0	1	1			13.3					0.0

Table 11.A Two-level coding of educators' responses on the challenges they faced when they designed ER activities to promote students' CT (IQ3.2).

Theme	Code I	Code II		Gre (N=:	ece		Sl	lova N=3	aki	a	T R	he (Rep	Czech ublic :15)		Spa (N=:	in		Quotes
			P S	6 H A	%	Р	S	H	Α	%	P S	H	A %	P S	6 H	ł	%	
ssues	Accommodate different student profiles	Students' different levels on CT	1	L	7.7					0.0	1 2	1	26.7				0.0	"Many students are discouraged from being involved considering that IT requires high skills. Having bad academic results, perhaps they underestimate themselves and assume that they cannot handle it" (CZ)
Design Issues		Time-consuming for teachers (preparation, maintenance)			0.0		1	2		8.1			0.0				0.0	"the second factor is the lack of time - when you do robotics, it takes far more time" (SK)
De	Effort	Teacher effort in designing the activities	1 1	L 2	30.8		1	1		5.4		1	6.7	1				"It takes quite some time to design an activity. To structure an introduction, the worksheets, if any, to do group formation and the division of roles." (GR)
nal t		Classroom time	2	2 1	23.1	1	3			10.8	2		13,3				0.0	" I feel that I do not have enough time in my classes for my students. (GR)
Educational context	School management	No money to buy robotic materials			0.0			1		2.7			0.0	2 2				"they continue to introduce new subjects like robotics without providing the appropriate economic resources to buy the material needed!" (SP)
		Students without experience with programming			0.0			1		2.7			0.0				0.0	"An impending issue involves students' lack of experience in programming." (SP)
sues		How to run a program			0.0		1			2			0.0				0.0	"Some did not realize what instructions meant about that something will start" (SK)
Student Issues	Programming skills	Sequence of steps			0.0		1			2.7			0.0				0.0	" they could not arrange the sequence of steps, as one step following the other" (SK)
Stuc		Conditions			0.0		1			2.7			0.0				0.0	" they could not understand what a branch is. To consider what happens in a condition when the answer is yes and when the answer is no, was a problem for them." (SK)

Table 11.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ3.2

Report on educators' profiling

Theme	Code I	Code II		Gree (N=1				lova N=3		l	R		zech blic 15)		-	pair =12		Quotes
			P S	HA	%	Р	S	H	A	%	PS	HA	%	Р	S H	I A	%	
	Duoguomming	Difficult to find a problem (construction? Programming? Robotic kit?)			0.0		1			2.7			0.0				0.0	"it was hard to find the fault, because the fault could have been in the program, or the wiring, or to a component that stopped working" (SK)
Issues	Programming Skills	Complex concepts - students cannot understand			0.0	2	1		8	8.1			0.0					" the student may not quite know algorithmization the student thinks he knows how to program, but he only knows how to modify some existing code! "(SK)
Student Is:		Lack of attitude to improve their solution			0.0	1	1			5.4			0.0				0.0	Some students are annoyed when their construction does not work and then give up. (SK)
S	Engagement	Demotivation because of factors influencing robots' working			0.0	2	3		1	13.5			0.0				0.0	"when programming is adequate, but the robot doesn't do what it's supposed to do, it often discourage those clever pupils" (SK)
		Problem with self-confidence among girls instead of boys			0.0	1				2.7			0.0				0.0	"Girls do not usually have confidence while boys are more persistent than girls. However, many girls are sometimes smarter" (SK)

T3.3 The implications

IQ3.3 What are the implications of utilising ER to promote students' Computational Thinking?

The analysis of the educators' responses about the implications of utilising ER activities to promote students' Computational Thinking, identified three different themes (see Table 12.A, column 'Theme'):

- Student engagement,
- Student Learning, and
- Student Skills

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 12.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 12.B (see Table 11.B, columns 'Code I', 'Code II', 'Quotes').

Most of the educators' responses (GR:41.2%, CZ:28.6%, SK:8.5%, SP:25%) tended toward the promotion of **Computational Thinking** skills through ER activities. They claimed that it is particularly important regarding students' skills (see Table 12.A, Theme: 'Student Skills') acknowledging that CT is (i) *a fundamental skill* and (ii) *a lifelong problem solving skill* (see Table 12.B, Code II:CT is a fundamental skill' and 'CT is a lifelong problem-solving skill' respectively).

Many Spanish educators' responses acknowledged the contribution of ER activities to students' *cognitive* (SP:25%) and *emotional engagement* (SP:25%) (see Table 12.A). They claimed that ER activities facilitated the educators to distinguish the less engaged and the high-performing students (see Table 12.B Code II: 'Separates the less engaged from the high-performing students'). Also, some claimed that their students' positive attitudes increased (see Table 12.B Code II: 'Increases students' positive attitude (entertainment)'). Greek, Slovak, and Czech educators' responses (GR:11.8%, SK: 12.1%, CZ:10.7%) also acknowledged the added value of student emotional engagement (see Table 12.A) but to a lesser extent than in Spain.

Finally, many Slovak educators' responses (23.4%) mentioned the added value of the *feedback* provided to the students (see Table 12.A Code I: 'Feedback provision') and in particular (see Table 12.B) the possibility of self and peer assessment (see Table 12.B Code II: 'CT Evaluation through self and peer assessment') (10.6%), as well as direct feedback (see Table 12.B, Code II: 'Immediate, visible output') (12.8%).

We observed that educators highlighted the relevance of CT skills, which may be cultivated through ER. Additionally, the ER activities *provided feedback* and enhanced their students' *emotional and cognitive engagement*.

Theme	Code I			Gre N=				_	-	vak =3(cia D)			Re	pu	zech blic 15)			Spa N=		
		P	S	H	A	%	P	S	Η	A	%	P	S	Η	A	%	P	S	H	A	%
ut	Cognitive			1		5.9	1	1	1		6.4					0.0	2				25
ent mei	Behavioral	1				5.9					0.0		2		1	10.7				1	12.5
Student Engagement	Emotional	1		1		11.8		5	1		12.8	2			3	17.9	1			1	25
	Authentic learning			1		5.9		6	2		17.0	1	1			7.1					0.0
nt ng	Playful learning					0.0	1	2	1		8.5		2	1	1	14.3					0.0
Student Learning	Experiential learning					0.0		2	1		6.4					0.0					0.0
Stı Lei	Collaborative learning	1				5.9	1	3	1		10.6					0.0					0.0
	Feedback provision	1				5.9	2	6	3		23.4			3	1	14.3					0.0
t	СТ	2	2	2	1	41.2	1	2	1		8.5	1	2	3	2	28.6	1		1		25.0
Student Skills	Abstraction			1		5.9		1			2.1		1			3.6				1	12.5
Stu Sl	Cognitive			2		11.8	1	1			4.3		1			3.6					0.0

Table 12.A. Two level coding of educators' responses on the implications of utilising ER to promote students' CT (IQ3.3).

Theme	Code I	Code II			eec =17	-			oval I=4'			R	ері	Cze ubli :28)	ic			5pai N=8		Quotes
			Р	S I	H A	%	Р	S I	H A	%	Р	S	H	Α	%	Р	S	HA	%	
		Increases girls' interest			1	5.9	1			2.1					0.0				0.0	"girls are intrigued by creative activities and devote much time working that a boy would not normally do." (GR)
gement	Cognitive	Separates the less engaged from the high-performing students				0.0			1	2.1					0.0	2			25.0	" allows evaluating students. Those being less engaged from those being persistent and highly performing." (SK)
Student engagement		Easier to understand the easier informatics concepts, e.g. variables				0.0		1		2.1					0.0				0.0	"with the younger pupils, what would be hard to explain, for example, the variable, they might understand easier with robotics" (SK)
Stude		Promotes Expressing feelings			1	5.9		1		2.1	1			1	7.1				0.0	"To express emotions. So that is where art comes in" (GR)
	Emotional	Increases students' positive attitude (entertainment)	1			5.9		4	1	10.6	1			2	10.7	1		1	25.0	" they like it very much. Because it is straightforward. They just did something and see it." (SP)
		CT Evaluation through self and peer assessment	1			5.9	1	2	2	10.6					0.0				0.0	" they were able to compare who had made the better choice of the two." (GR)
مط		Immediate, visible output				0.0	1	4	1	12.8					0.0				0.0	<i>"the benefit is that they have visible output and get immediate feedback. "(SK)</i>
Student Learning	Feedback provision	Promote interdisciplinarity				0.0				0.0			1		3.6				0.0	"The development of CT consists in the fact that it is not limited to the field of IT, but is an interdisciplinary issue that intersects with a larger number of areas. (CZ)
Stude		Promote creativity				0.0				0.0			2	1	10.7				0.0	"including such activities in the 8th or 9th grade would be an excellent motivational element to whip up their imagination and creativity. And even more, they are already in such a phase of thinking that it could also push them further concerning other subjects (CZ)

Table 12.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ3.3

Report on educators' profiling

Theme	Code I	Code II			ree I=1						ak 47			R	lep	Cze ubl =28	ic			Spa (N=			Quotes
			Р	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%	P	S	HA	1		
		CT is innate in various art forms				1	5.9					0.0				1	3.6				C	need to calculate	s, whatever you try to do, you your movements. So you nputational thinking. (GR)
s		Promotes algorithmic thinking					0.0	1	1			4.3					0.0				0	"I think that it de	velops logical thinking"(SK)
ıt Skills	СТ	CT is a fundamental skill for active citizenship			1		5.9					0.0					0.0				C	"Computational t citizen" (GR)	hinking makes you an active
Student	01	CT is a fundamental skill		1	1		11.8	3	1	1		4.3			1		3.6	1			1		udy, you need CT skills. If you do t's say you won't be able to ers."(GR)
		CT is a lifelong problem-solving skill	2	2 1			17.6	5				0.0	1	2	2	1	21.4			1	1		thinking is integral to our e. During our life, we are called lems. (GR)

T3.4 The support required

IQ3.4 What type of support do educators require to utilise ER to promote students' Computational Thinking?

The analysis of the educators' responses about the type of support they require when designing ER activities to promote students' Computational Thinking, identified six different themes (see Table 13.A, column 'Theme'):

- Curriculum Issues
- Educational context
- Learning Content
- Design Issues
- Technical Issues
- No Need for support

These themes were further analysed in two levels of detail reflected in Codes I and Codes II (see Table 13.B, columns 'Code I', 'Code II'). Also, educators' quotes are provided in Table 13.B (see Table 13.B, columns 'Code I', 'Code II', 'Quotes').

The educators' responses in this issue (GR 25.0%, SK 25.0%, CZ 27.8%) reinforced the overall requirement for a *repository*. Specifically, they asked for (i) exemplar activities (see Table 13.B, Code II: 'Need for exemplar activities'), and (ii) a community platform for sharing ideas and designing collaboratively (see Table 13.B, Code II: 'Community platform for content & human resources - for sharing projects and finding co-designers').

According to the Spanish educators' responses, they need a supportive *school management* (21.4%) (see Table 13.B, Code II 'Makers' club') and appropriate *learning material* (21.4%) (see Table 13.A) specifically for Art teachers (see Table 13.B, Code II: "Materials for Art teachers").

Theme	Code I			Gre N=				_	lov N=	-	cia 5)			Re	pu	zech blic 12)				aiı =1	
		P	S	Η	A	%	P	S	Η	A	%	P	S	H	A	%	P	S	H	A	%
В	Time allocation	1				3.1	1			1	5.0				1	5.6		2			14.3
ulu ies	Interdisciplinary support	1				3.1					0.0	1				5.6			1	1	14.3
Curriculum Issues	Subject-based curriculum					0.0					0.0					0.0				1	7.1
la	School management			1	2	9.4		1	1		5.0	1	1	1		16.7	1	1		1	21.4
Educational context	Interdisciplinary collaboration	1	1	2		12.5					0.0		2			11.1				1	7.1
duc	educator training	1	1			6.3	1	3	1		12.5			1	1	11.1					0.0
Ē	educator community	2	2	2		18.8					0.0					0.0					0.0
ning ent	Materials					0.0	3	1	1	1	15.0					0.0	2			1	21.4
Learning Content	Repository	1	5	1	1	25.0	2	5	3		25.0		3	1	1	27.8					0.0
ng	Methodology	1	4			15.6	1	6	2		22.5		1	2	1	22.2	1	1			14.3
Design Issues	Materials					0.0	1	4			12.5					0.0					0.0
Technical Issues	Appropriate Robotics technologies availability					0.0	1				2.5					0.0					0.0
No Support	No need for support		2			6.3					0.0					0.0					0.0

Table 13.A. Two-level coding of educators' responses on the type of support they require to utilise ER toward promoting students' Computational Thinking (IQ3.4)

Theme	Code I	Code II			ee =32				ova N=4	kia {0)			Rep	-	ech olic 8)			Spa N=	in 14)		Quotes
			Р	S H	I A	%	Р	S	H A	A %	F	P S	H	A	%	Р	S	H A	V 9	6	
onal xt	ol nent	Create makers' clubs		1		3.1				0,0)				0.0	1	1	1	. 21		"In a makers club, you do not have the anxiety of wasting educative time. It may be more fun…". (GR)
Educational context	School management	Arts teachers to attend educational robotics in class			2	6.3				0,0)	1	1		16.7				0	,0	"I want to get acquainted with robotics, to see some action in a classroom." (GR)
Ed	m;	Financial support				0.0		1	1	5.0)				0.0				0	.0	"finance and material provision certainly" (SK)
	als	Materials for Art teachers				0.0	1			2.5	5				0.0	2		1	. 21	l.4	"materials not only for informatics but also for art" (SK)
nt	Materials	Video Tutorials				0.0	2	1	1 1	12	5				0.0				0	.0	" maybe video tutorials would be helpful" (SK)
Conte	Ма	Textbooks, materials for students - to work independently				0.0		1		2.	5				0.0				0	.0	"Such basic, simple teaching material, I would call it worksheets." (SK)
Learning Content	Repository	Need for exemplar activities	1	5 1	1	25.0	2	2	1	12.	5	1		1	11.1				0	.0	" have recommended activities that do not just provide a flow of tasks but elaborate on their objectives for both CT and Art." (GR)
	Repo	Community platform for content & human resources - for sharing projects and finding co-designers				0.0		3	2	12.	5	2	1		16,7				0		"some kind of electronic platform, some kind of website, not to use a written form, but videos of best practice" (CZ)
	gy	Short useable methodology				0.0		2	1	7.	5				0.0				0	.0	"a short methodology for 15 min is realistic." (SK)
Design Issues	Methodology	Less formalism		3		9.4			1	2.5	5		1	1	11.1				0	,0	"scenarios should be well written, and they need to be simple to achieve an adequate enactment." (GR)
D	Metł	Need for a design methodology	1	1		6.3	1	4		12.	5	1	1		11.1	1	1		14	1,3	"a framework that structures my practice, because right now it is a little bit up in the air. " (GR)
No support	No need for support			2		6.3				0.0)				0.0				0	.0	"We do not need any special help." (GR)

Table 13.B. Three-level coding (Themes, Code I, Code II, Quotes) of educators' most frequent responses on IQ3.4

Report on educators' profiling

Issue 4. What experience do educators have with ER technologies?

T4.1 The Technologies

IQ4.1 What ER technologies do educators utilise in their practice?

The analysis of the educators' responses about the type of support they require when designing ER activities to promote students' Computational Thinking, identified three different themes (see Table 14, column 'Theme'):

- Robotics kits,
- ER simulator technologies, and
- Programming environment.

These themes are further analysed in detail in Codes I (see Table 14.A.1, Table 14.A.2, Table 14.A.3 'Code I'). Since the responses refer to particular technologies, they are quite specific, thus not requiring further analysis. Thus, Table 14.B with Codes II and educators' quotes are not provided for this question.

There were various responses regarding the use of ER technologies in educators' practice. Educators mentioned **21 different robotics kits**, **12 ER simulators** and **7 programming environments** (see Tables 14. A.1, 14. A.2, 14. A.3). Although the response rates were uniformly distributed, it is worth noting that regarding robotics kits the Lego Mindstorms was mentioned by educators of all four countries (SK:15%, GR:9.4%, SP:6.7%, CZ:5.6%). Most responses about ER simulators mentioned Makecode for Micro:bit (SK:20%, GR:12 %, CZ:5.6 %) and Tinkercad (SK:7.5%, GR:6.3%, CZ:5.6%). Both ER simulators can also be used by physical robots. Lastly, the Scratch programming environment emerged as the most used programming environment (SP:20%, CZ:5.6%, SK:5%, GR:3%).

Theme	Code I				ec 32					vak =4(F	ler		zech blic .8)			Spa N=:		
		P	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%	Р	S	Η	A	%
	Arduino					0,0		2	1		7.5					0.0	1				6.7
	Artsy			1		3.1					0.0					0.0					0.0
	Beebot			1		3.1					0.0	1				5.6	1				6.7
	Bluebot			1		3.1					0.0			2		11.1	1				6.7
	Cubetto					0.0					0.0					0.0	1				6.7
	E-textiles (Arduino Lillypad, Flora)					0.0					0.0					0.0		1			6.7
	Edison		1			3.1					0.0					0.0					0.0
	Escornabot					0.0					0.0					0.0	1				6.7
\$	Kitronik + microbit					0.0			1		2.5					0.0					0.0
Kit	Lego (not specified)					0.0	1	1	1		7.5					0.0					0.0
tics	Lego Mindstorms	1	2			9.4	1	4	1		15.0			1		5.6				1	6.7
Robotics Kits	Lego Spike					0.0		1			2.5					0.0					0.0
R	Makey-makey			1		3.1					0.0					0.0	1				6.7
	Microbit					0.0	3	5			20.0					0.0					0.0
	Neuron					0.0					0.0					0.0					0.0
	No MCU					0.0					0.0					0,0					0.0
	Ozobot					0.0	1	1			5.0		3	1		22.2	1				6.7
	Ring:bit Car					0.0		1			2.5					0.0					0.0
	Thymio		1			3.1					0.0					0.0					0.0
	Unplugged					0.0					0.0					0.0		1			6.7
	WeDo	1	2			9.4	1				2.5					0.0					0.0

Table 14.A.1 Two-level coding of educators' responses on the technologies educators utilise in their practice (IQ 4) focusing on Robotics Kits

Theme	Code I				ee =32					vak =4(Re	pu	zech blic 18)			-	ain :14	
		Р	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%	Р	S	H	A	%
	Terrapinlogo-beebot	3				9.4					0.0	2				11.1					0.0
	Genially-beebot	1				3.1					0.0	2				11.1					0.0
	Makecode for microbit	1	3			12.5	2	4	2		20.0		1			5.6					0.0
	Miranda					0.0					0.0					0.0					0.0
ors ies	OpenRoberta		3	1		12.5	1				2.5					0.0					0.0
ulat olog	Virtual Robotics Toolkit		2			6.3					0.0					0.0					0.0
ER simulators technologies	Tinkercad		1	1		6.3	1	1	1		7.5		1			5.6					0.0
ER : tec	TRIK studio		1			3.1					0.0					0.0				\square	0.0
	Delivery of physical robots			1		3.1					0.0			1		5.6					0.0
	Roboblockly		1			3.1					0.0					0.0	1				6.7
	VexCode					0.0					0.0			1		5.6					0.0
	WeBots					0.0					0.0		1			5.6					0.0

Table 14.A.2 Two-level coding of educators' responses on the technologies educators utilise in their practice (IQ 4) focusing on ER simulators technologies

Table 14.A.3 Two-level coding of educators' responses on the technologies educators utilise in their practice (IQ 4) focusing on the Programming Environment

Theme	Code I				ec 32	-		_	-	ak 40	-			Re		zech blic 18)				pai =1	
		Р	S	H	A	%	Р	S	H	A	%	P	S	H	A	%	Р	S	H	A	%
	w3schools	1				3.1					0.0					0.0					0.0
te ac	doodles	1				3.1					0.0					0.0					0.0
min men	scratch	1				3.1	1	1			5.0		1			5.6	3				20.0
ron	python					0,0		1			2.5					0.0		2			13.3
Programming environment	edublock	1				3.1					0.0					0.0					0.0
	code.org	1				3.1					0.0					0.0		1			6.7
	Minecraft	1				3.1					0.0					0.0		1			6.7

3. CONCLUSIONS

The conclusions included in this section are twofold. Firstly we address the main research question by elaborating on the results around the issues investigated, and secondly, we reflect on how results may inform the FERTILE design methodology.

3.1 Research Question: "How to support educators in designing interdisciplinary activities of ER and Art that promote CT in a blended learning context?"

We address the main research question through the issues set in the research design (see section 2.2).

Issue 1. What experience do educators have in designing interdisciplinary activities of ER and Art?

Regarding the educators' experience of designing interdisciplinary activities of ER and Art, we noted diverse responses per country. However, despite this emerging diversity, we distinguished some common experiences in the four topics investigated.

The *educators' ideas* for designing interdisciplinary activities that combine ER with Arts highlighted the potential of generating an artistic output through programming and constructing robots (see Table 1.A, Codes I: 'Create Artful robots and program them for a general task' and 'Create Artful robots and program them to perform Art'). They also exploited the potential of designing an environment where the robot operates (see Table 1.A, Codes I: Program robot to perform Art, 'Program robot to create Artf, 'Program robot to respond to artful triggers'). The typical art forms proposed for interdisciplinary activities were Arts & Crafts, Music, Dance, and Theatre.

The *difficulties/challenges* that educators faced when designing interdisciplinary activities combining ER with Art that also prevented artful ER projects from being carried out, concerned the design process, the students' involvement, technical malfunctions, and rigidity of the curriculum or the educational context (see Table 2.A, Column: 'Themes'). The most important problem mentioned, related to the educational context, was the collaboration among educators of different subjects (see Table 2.A, Code I: 'Interdisciplinary Collaboration'). This challenge also turned into a design issue (see Table 2.B, Code I: 'Management of ICT and Art'), since ICT educators were unfamiliar with the subject of Art and, respectively art educators were unfamiliar with robotics when designing activities.

The perceived *benefits/implications* of organising interdisciplinary activities combining ER with Art were considered significant in terms of student engagement at a cognitive level (see Table 3.A, Code I: 'Cognitive'). These activities motivated and increased the students' interest since, through Art, they were involved in meaningful robotic activities. Another important benefit involved these activities revealing the potential of a) ER to be a cornerstone for cross-curricular activities and b) Art to enrich any subject with which it is combined (see Table 3.B, Code II: 'ER acts as a link between many subjects' and 'Art enriches any subject' respectively).

Finally, the *support* that educators required to design interdisciplinary activities combining ER with Art was mainly the provision and sharing of educational material (exemplars) from a repository (see Table 4.A, Code I: 'Repository'). In addition, they needed a framework for collaborating with educators from other disciplines to exchange ideas and information (see Table 4.B, Code II: 'Cultivate collaboration among educators'). Consequently, in the context of school management (see Table 4.A, Code I: School management'), they asked for a flexible program to have opportunities to work with other educators. Finally, as a follow-up to the financial difficulties they mentioned as a problem, they would like financial support for the purchase of technology (see Table 4.B, Code II: 'Financial Support').

Issue 2. What experience do educators have with ER simulators and ICT for blended learning?

The educators' ideas for **designing ER activities utilising ER simulators and ICT for blended learning**, three main suggestions emerged from the educators' responses according to their experience:

- Online synchronous classes mainly for demonstration purposes (see Table 5.A, Code I 'Synchronously ER/ART: Demonstration') either art creations (see Table 5.B, Code II: "Synchronously ER/ART: Demonstration') or the operation of robotic constructions, in real time (see Table 5.B, Code II: 'Synchronous communication for showing robots'),
- 2. Online asynchronous classes for providing appropriate materials to reinforce students' home study (Table 5.A, Code I: 'Asynchronously ER/ART: Study'),
- 3. Programming of robots both synchronously and asynchronously (Table 5.A, Code I 'Synchronously/Asynchronously ER: Programming, programming unplugged').

Educators' responses focused on the technologies used in combination with simulators for synchronous and asynchronous activities, rather than on the design and implementation of such activities. This is evident from their responses which focused more on technologies (see Table 5.A, Themes: 'Asynchronous technologies, Synchronous technologies and Online Learning Implementation). Educators' responses refered to the design of online courses. In particular, The *difficulties* that educators faced when utilising ER simulators and mainly ICT for online learning in the four countries were distributed across technical, design and student issues (see Table 6.A, Column: 'Themes'). The most prominent challenge faced was related to students' engagement in online learning activities regarding synchronous and asynchronous sessions (see Table 6.A, Code I: 'Engagement'). Another issue that has also emerged was the availability of appropriate robotic technologies for online courses_(see Table 6.A, Code I: 'Appropriate Robotic Technologies'). Finally, the issue of communication and time management in online synchronous courses with simulators has been raised (see Table 6.A, Code I: 'Online Modality').

The perceived *benefits/implications* of utilising ER simulators and ICT for blended learning focused on effective teaching practice (see Table 6.A, Code I: 'Effective teaching') which was consistent with teachers' suggestions on how to change the educator mindset towards integrating ER simulators and ICT for blended learning. The majority of the proposals to change the educators' mindset toward integrating ER simulators and ICT for blended the design and organisation of teaching practice as follows: (i) to alternate online and f2f lessons (see Table 8.B, Code II: 'To alternate online and f2f lessons'), (ii) to use ER simulators instead of physical robots when needed, e.g., in cases of students' absence or when robotic kits are not

available (see Table 8.B, Code I: 'ER simulators instead of physical robots'), (iii) to use simulators for extending f2f lesson or for homework (see Table 8.B, Code II: 'Work asynchronously with sumulators as homework'), (v) to provide extra asynchronous activities for those interested (see Table 8.B, Code II: 'Provide extra asynchronous activities for those interested'), and (vi) to implement flipped classroom (see Table 8.B, Code I: 'Flipped classroom').

Lastly, the *support* that educators required to utilise ER simulators and ICT for blended learning involved a design methodology (see Table 9.B, Code II: 'Need for a design methodology'), more teaching time (see Table 9.B, Code II: 'More time/hours') and educator training (see Table 9.B, Code II: 'Need for teacher training: Seminars') through seminars. They had also asked for financial support for software and robotic technologies (see Table 9.B, Code II: 'Financial support for technologies').

To summarise, as far as the experience of the educators in designing ER activities by utilising ER simulators and ICT for blended learning is concerned, they focused more on the issue of the technologies used. Their practice scarcely included designing blended learning courses with ER simulators. This practice may be attributed to the challenge of achieving students' engagement in online sessions and the need for support through seminars and a design methodology.

Issue 3: What experience do educators have with ER and Computational Thinking?

The educators' ideas for designing ER activities to promote computational thinking focused on the problem-solving process involved. In most cases, educators haven't referred to the variety of computational thinking skills, mainly focusing on i) the design of activities to promote Algorithmic Thinking (see Table 10.A, Theme: 'CT Algorithmic Thinking Promotion') and ii) Problem solving activities that cultivate CT (see Table 10.A, Code I: 'Problem Solving').

The *challenges* that the educators faced when designing ER activities to promote students' CT, included the time and effort required (see Table 11.A, Code I: 'Effort') and student-related parameters such as students' programming skills and engagement (see Table 11.A, Code I: 'Programming Skills', 'Engagement'). Moreover, they mentioned difficulties related to the school's management, such as the class teaching time needed and the budget constraints for purchasing the required robotic equipment (see Table 11.B, Code I: 'School management').

The perceived *benefits/implications* of utilising ER to promote students' CT, highlighted CT's added value as fundamental and lifelong skills (see Table 12.B, Code I: 'CT'). Moreover, the educators mentioned that the combination of ER and CT promotes students' engagement at both cognitive and emotional levels (see Table 12.A, Theme: 'Engagement'). In addition, this combination positively impacted students' learning by providing on-time feedback (either by the ER simulators or by peers) (see Table 12.B, Code I: 'Feedback provision').

The *support* the educators required to utilise ER toward promoting students' CT skills was associated with design issues, learning content and educational context (see Table 13.A, Themes: 'design issues', 'learning content', 'educational context'). In particular, they needed both to share ideas and material (see Table 13.B, Code I: 'materials') as well as a repository of exemplar material

related to the curriculum (see Table 13.B, Code I: repository). In terms of design, they pointed out the need for a design methodology (see Table 13.B, Code I: 'Methodology').

Issue 4: What experience do educators have with ER technologies?

The educators mentioned a variety of robotic kits, ER simulators and programming environments for ER activities. The robotic kit that was highly mentioned by educators of the four countries was Lego Mindstorms whilst Makecode for Micro:bit and Tinkercad were the most popular ER simulators. It is quite interesting that the most frequently used ER simulators were those that simulate and program physical robots. Lastly, Scratch programming environment emerged as the most used programming environment, which may also program physical robots (see Table 14.A.1, Theme: 'robotic kits').

4.2 How results may inform the FERTILE design methodology

All the above findings will form the basis for the design of the FERTILE methodology. In particular, (i) the steps of the artful ER projects design process, (ii) the way of interweaving ER and Art in artful ER projects, (ii) the sharing of activities between f2f and online in a blended learning mode, as well as (iv) the support provided for cultivating various CT skills.

The educators' profiling illustrated their experience of (i) designing interdisciplinary activities with ER and Art, (ii) designing blended learning using ICT and ER simulators, and (iii) cultivating CT. In particular, regarding these three pillars, they provided ideas, reflected on the benefits, expressed their concerns, and outlined the support they need for integrating artful ER projects into their educational practice.

Below we make a first attempt to distinguish aspects of the educators' profiling that may inform the FERTILE design methodology. In general, educators seemed to recognise the value of CT as a fundamental skill. Approaching CT through problem-solving, they adopted a problem-solving approach in designing Artful robotic projects. However, most educators, even ICT educators, seemed to match CT with algorithmic thinking ignoring other skills like abstraction, decomposition, evaluation, etc. The FERTILE methodology must also cope with this, cultivating all the popular CT skills. They also asked for guidance, although the level of guidance differed since some asked for step-by-step support while others asked for the core idea of an artful robotic project.

Regarding *blended learning,* we intend to exploit the ideas proposed by the educators who participated in our profiling. They suggested several effective teaching strategies for enriching face-to-face teaching, asynchronous communication for studying, and synchronous communication for demonstrating art/robotic constructions and learning material. Although the educators expressed concerns about student engagement during online learning sessions, there were indications about the potential of artful ER activities cultivating CT to promote student engagement in a blended learning context. Especially, study material and programming seem appropriate for asynchronous learning highlighting the potential of ER simulators.

Still, although the educators were highly sceptical about the added value of online learning in everyday educational practice, they favour utilising ER simulators when physical robots are unavailable. Such a recommendation is essential given that the financial support to purchase robotic technologies emerged as an important aspect. In fact, we noted that the most frequently used simulators could also be used with physical robots in the classroom. This conclusion is critical towards proposing adequate simulators for particular educational contexts.

The educators also acknowledged the need for additional effort to design artful ER activities in blended learning, and therefore they asked for a repository of exemplar projects. Finally, they underlined the importance of collaboration among teachers and, hence mentioned the need for a community platform to share ideas and design collaboratively. A main issue emerging from these needs is the context of interaction and a common 'language' making this interaction meaningful for co-designing Artful robotic projects. The FERTILE consortium concludes that it is crucial to cater to these needs in the FERTILE design process and adequately integrate them into the FERTILE community platform.

The effort needed for this report was enormous. It involved collecting data from questionnaires and then through focus groups and interviews in the four countries, involving educators from various fields (ICT & Arts) and levels of education (primary, secondary and higher). Furthermore, analysing all these data uniformly so that results combine and compare educators' experiences from the four countries was quite demanding and time-consuming. This effort reflects the partners' effective collaboration and commitment to a quality result useful for the next steps of the FERTILE Project. This report, along with the literature review, are the main pillars for the tasks that follow: the FERTILE design methodology and the FERTILE community platform.

REFERENCES

Jorrín-Abellán, I. M., Fontana Abad, M., & Rubia Avi, B. (2021). *Investigar en educación. Manual y guía práctica*. In Sintesis Publications.

Miles, M. B., Michael Huberman, A., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd Edition). In *SAGE Publications, Inc.*

Neuendorf, K. A. (2020). *The Content Analysis Guidebook*. In SAGE Publications, Inc. <u>https://doi.org/10.4135/9781071802878</u>

Stake, R. E. (2010). Qualitative Research: Studying How Things Work. *New York, NY, US: Guilford Press.*

Willig, C. (2013). *Introducing qualitative research in psychology*. McGraw-hill education (UK).

APPENDIX

Appendix A: Preliminary Survey Questionnaire

Introduction

The following questionnaire aims to explore the profile of educators practising Educational Robotics in their everyday educational practice and the implications caused by the pandemic. It has been developed in the context of FERTILE Project (Artful Educational Robotics to promote Computational Thinking in a Blended Learning context), Erasmus+ KA2 - Partnership for Higher Education, KA 2021-1-EL01-KA220-HED-00002336.1.

You need about 10 minutes to complete it. Thanks for your time and support!

Section I. Background Information

What is your age?

- under 25
- 25-40
- 41-55
- more than 55

How long have you been working as a teacher/professor?

- This is my first year
- 1-5
- 6-12
- 13-20
- more than 20

At which educational level do you currently teach?

- Higher Education
- Secondary Level
- Primary Level
- Non-formal education

What is the highest level of formal education that you have completed?

- Bachelor Degree
- Master Degree
- PhD Degree

Your main background is in..

- Informatics
- Mathematics
- Physics

- Technology
- Primary Education
- Other (please explain):

Have you attended ER training courses ? If "yes" please explain (seminars, teacher training along with dates-duration, mode -f2f, online, blended-learning)

Section II. Teaching experience with ER technologies

In which context have you applied ER?

- Projects (primary education)
- Projects (secondary education)
- University course for ER
- Non-formal education
- Other (please explain):

In which subjects have you applied ER? (check more than one if necessary)

- Informatics / Information & Communication Technology (ICT)
- Maths
- Physics
- Art
- Technology
- Robotics
- Other (please explain):

What kind of ER technology have you used with your students? To what extent? *

	Low	Moderate	High
Beebot			
Ozobot			
WeDo			
Spike			
EV3			
Thymio			
Edison			
Microbit			
Arduino			

Raspberry PI		
Mbot		
None		
Other (please explain)		

Have you applied interdisciplinary projects combining ER with various types of arts like... (select from the list)? To what extent?

	None	Low	Moderate	High
Music				
Dancing				
Theatre				
Video and Arts(e.g animation)				
Literature				
Art and Crafts (eg. painting)				
Other (please explain)				

Have you designed interdisciplinary projects with ER and various types of Art like... (select from the list)? To what extent?

	None	Low	Moderate	High
Music				
Dancing				
Theatre				
Video and Arts(e.g animation)				
Literature				
Art and Crafts (eg. painting)				
Other (please explain)				

	F2F	Blended	Online
GearsBot			
Open Roberta			
Webots			
Vex code			
Miranda Software			
Kibotics			
Tactode programming system			
Geogebra			
USARSim			
Thymio Suite			
Simspark			
Gazebo			
MakeCode			
None			

Which ER simulators have you used and in what mode?

Section III. Practices adopted during the lockdown due to COVID-19 with ER

Have you applied ER activities during the lockdown due to COVID-19?

- Yes
- No

Please briefly describe the context

.....

- If 'Yes', have you used ER simulators?
 - Yes
 - No

SECTION IV. Professional development needs

Thinking of your own professional development needs, please select relevant subjects from the list below.

	None	Low	Moderate	High
--	------	-----	----------	------

Report on educators' profiling	
FERTILE – Public	

Training in ER kits		
Training in ER simulators		
Training in ER pedagogical approaches		
Training in learning design with ER		

Do you wish to participate in a focus group or interview at the next stage of the FERTILE Project concerning educators profiling that use ER in their educational practice? If so, please note below your name and email

.....

APPENDIX B

1 - Focus Discussion Groups Questions- Version 1

1 - Teaching experience in interdisciplinary activities with ER and Art

- 1.1 Have you organised interdisciplinary activities combining Educational Robotics with Arts? Please describe them in detail. If not, why? (experience)
- 1.2 If yes, what were the main difficulties you faced in designing and implementing such interdisciplinary activities?
- 1.3 If yes, which are the main benefits of these interdisciplinary activities?
- 1.4 What type of support do you need to design or implement such interdisciplinary activities?

2 - Teaching experience with ER simulators, communication technologies & blended learning

- 2.1 Have you organised online ER activities? Which technologies have you employed and what for? Please describe it in detail. If not, why? (experience)
- ER simulators,
- communication/collaboration tools
- 2.2 What were the main difficulties you faced in designing and implementing online ER activities (during the lockdown)?
- 2.3 What are the main benefits of these online ER activities?
- 2.4 How does this experience may enrich your everyday educational practice with ER? What could be done online, and what would better remain in the classroom? (idea generation)
- 2.5 What type of support do you need to blend f2f activities with online ER activities?

3. Teaching experience with ER and Computational Thinking

- 3.1 Have you organised ER activities to promote CT skills? Please describe in detail, i.e., which skills have you tried to cultivate and how. If not, why? (experience)
- 3.2 What were the main difficulties that you faced in cultivating CT skills?
- 3.3 Which, in your opinion, are the main benefits of these activities?
- 3.4 How do you think that ER and ART can be combined to cultivate CT skills?
- 3.5 What support do you need to promote CT in designing or implementing ER for interdisciplinary activities?

2 - Focus Discussion Groups Questionnaire -Version 2

1 - Teaching experience in interdisciplinary activities with ER and Art

- 1.1 Which other subjects have you planned interdisciplinary activities with?
- 1.2 Have you organised interdisciplinary activities combining Art and Educational Robotics? Describe them in detail. If not, why?
- 1.3 What do you consider being the main difficulties in designing/implementing them?
- 1.4 What do you consider to be the main advantages of these interdisciplinary activities4
- 1.5 What type of support do you need to design or implement such interdisciplinary activities?

2 - Teaching experience with digital technologies and distance learning.

- 2.1 Have you organised online activities? Which technologies have you employed and what for? Please describe it in detail. If not, why? (experience)
- Web2.0
- communication/collaboration tools
- 2.2 What were the main difficulties you faced in designing and implementing online activities (during the lockdown)?
- 2.3 What are the main benefits of these online activities?
- 2.4 How does this experience may enrich your everyday educational practice with ER? What could be done online, and what would better remain in the classroom? (idea generation)
- 2.5 What type of support do you need to blend f2f activities with online ER activities?

3. Teaching experience with ER and Computational Thinking

- 3.1 What do you know about Computational Thinking? (, pattern recognition, abstraction, generalisation, algorithmic thinking, etc.)
- 3.2 Have you organised activities that you believe promote Computational Thinking skills?
- 3.3 Do you consider that CT can be combined with the teaching of art lessons? If so, in what way? (ideas)
- 3.4 How do you think that ER and ART can be combined to cultivate CT skills?
- 3.5 What support do you believe you need to promote CT in designing or implementing ER for interdisciplinary activities?